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EXECUTIVE SUMMARY

Industries worldwide are evolving rapidly amid new technologies and policy
shifts, while markets are more interconnected than ever. Information travels
almost instantaneously across global networks, meaning a shock in one market
can ripple quickly through others. The investment industry must continually
adapt to changing economic and market environments, yet traditional financial
models—built on assumptions of equilibrium and rational actors—often struggle
to capture the unpredictable, networked, and nonlinear behaviors observed in
financial markets.

This report reconsiders how we understand financial markets, framing them
as complex systems and offering alternative approaches to traditional financial
models. By applying methods from complex systems sciences, it equips
financial professionals with new tools for systemic risk analysis, portfolio
management, and system-level investing. Techniques such as agent-based
modeling and network theory can be used to understand and capture complex
market phenomena such as emergent behavior, nonlinearity, feedback loops,
and structural resilience.

For portfolio managers and risk analysts, adopting a systems perspective
means moving beyond normal distributions and equilibrium-based models to
capture investment complexity and better inform scenario planning, portfolio
optimization, and risk management. For regulators, it means leveraging new
models to strengthen systemic risk oversight and macroprudential policies.

The report comprises two primary sections. The first section introduces core
ideas from complex systems sciences that challenge the assumptions of
traditional financial analysis and evolve our understanding of systemic risk.

The second section demonstrates how complex systems methods—specifically,
ABM and network theory—can be applied to systemic risk oversight and
investment decision making.

Ultimately, this report provides a clear and approachable foundation for those
new to complex systems, agent-based models, and network theory. By taking
seriously the view that financial markets are complex systems, investment
professionals and regulators can access new tool kits for anticipating financial
stability risks, improving portfolio resilience, and analyzing system-level
behavior in capital markets and the broader economy. Yet, beyond new tools,
it seeks to spark a shift in thinking—challenging conventional paradigms of
market behavior and fostering the mindset needed to thrive in a world defined
by complexity, uncertainty, and accelerating change.

© 2025 CFA Institute. All rights reserved. | 1
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Key Takeaways

Financial markets are complex adaptive systems. Financial markets and
economies are not static but dynamic, evolving, and highly interconnected.
Dense webs of interconnection mean that changes in one area of a system
can have nonlinear, dramatic effects in other areas of the system or change
the behavior of the system as a whole.

Complex systems represent a new paradigm for financial modeling.
Traditional equilibrium and normal-distribution models struggle to

explain the “stylized facts” or statistical features of global markets. Such
characteristics as heavy-tailed distributions, nonlinearity, and volatility
clustering indicate the need for a complex systems lens, which is better
suited to analyze how systems with many different agents (e.g., market
participants) interact, adapt, and influence each other over time, generating
the statistical characteristics observed in real markets. This systems lens can
be used to explain and anticipate real-world phenomena, such as bubbles,
crashes, and sudden shifts in investor sentiment.

Portfolio management can benefit from a dynamic, systems-based
approach. Financial markets often depart from the assumptions of classical
finance models, such as the widely-used capital asset pricing model (CAPM),
which assumes rational agents and equilibrium. Insights from behavioral
economics and complexity economics suggest that market behavior is

more accurately captured by incorporating the subrational decision making
of market participants (e.g., herding behavior), networked and feedback
effects, and regime shifts into models. Complex systems offer a systematic
way of understanding how these behaviors drive price changes and
volatilities across markets.

Systemic risk analysis demands a complex systems lens. Nonlinearity,
feedback loops, and dense interconnections within financial systems

mean that small disturbances can cascade into systemic events or be
dampened unexpectedly. Rather than examine assets in isolation, systems-
focused risk analysts trace how shocks permeate across overlapping webs
of relationships.

Agent-based modeling and network theory are practical tools for building
resilience into portfolios and markets. Methods that simulate heterogeneous
investor behavior and map contagion paths enable scenario tests that reveal
hidden vulnerabilities and emerging market regimes. For these reasons,
some central banks have started to use network theory and agent-based
models to enhance stress tests, while others use scenario analyses to tackle
emerging climate-related financial risk.

CFA Institute



INTRODUCTION

We live in a vastly interconnected world where information, capital, goods, and
services can transit rapidly through networks of people, institutions, markets,
and economies. These interdependencies affect economic activity at all scales—
from local market behavior to global macroeconomic events. To effectively
assess risk and forecast systemwide impacts, analytical models must be able

to account for these multiscale and complex webs of interactions.

Although the theoretical foundations of complexity economics (see Arthur
2015) and system-focused approaches to the economy can be traced back to
the 1950s and 1960s (see Appendix A), it is only within the past few decades
that globalization, interconnection, and the mass availability of big data have
prompted what some scholars refer to as a “complexity turn” (see Castellani
2014; Urry 2005). Indeed, the embrace of complex systems has become
implicit in the modern economy. For example, the development of artificial
neural networks (ANNs) that underpin the deep learning architectures of large
language models (LLMs) stems from progress in the complexity sciences.

In the future, complex systems approaches will continue to grow as they are
increasingly deployed in modeling, monitoring, and responding to pressing
global challenges, including emerging pandemics, rising global inequality, and
climate change (Hébert-Dufresne, Allard, Garland, Hobson, and Zaman 2024).

Complex systems sciences can be described generally as a multidisciplinary
framework for understanding highly dynamic, interconnected, and evolving
systems. Whether studying an ant colony, a human brain, or an economy,
complex systems approaches assume system components interact to produce
macro-level outcomes that are more than the sum of individual actions. This
perspective shifts the focus from isolated parts of the system to the collective
behavior arising from system dynamics.

For financial markets, two general approaches for applying complex systems
have emerged. Econobiology, or “evolutionary economics,” uses lessons from
evolutionary biology to understand complex economic and market behavior.
Econophysics is inspired by complexity frameworks and statistical modeling
in physics and applied to economic and market behavior (Rickles 2011).

Both approaches, however, overlap to a significant extent in their theoretical
assumptions and analytic methodologies. For example, both hold that market-
level phenomena (e.g., volatility, crashes, contagion, innovation) result from
myriad interactions among heterogeneous agents (e.g., investors, firms,
governments, regulators), often yielding unexpected (i.e., heavy-tailed) or
nonlinear outcomes. Additionally, both approaches consider the characteristics
of financial markets to be well suited for systems-based analyses. As such, this
report introduces key features of complex systems commonly described within
both approaches (see Exhibit 1) and identifies modeling techniques used across
the complexity sciences.

© 2025 CFA Institute. All rights reserved. | 3
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Exhibit 1. Key Features of Complex Systems

e Emergence: Higher-order features or patterns arise from lower-level
interactions. For example, market volatility or liquidity crises emerge from
the interactions of many traders and institutions and cannot be traced to
a single actor. Asset bubbles and crashes are emergent phenomena of the
entire market system.

e Heterogeneous adaptive agents: Market participants differ in their goals
and strategies, but they are mutually interdependent and adapt to each
other's behavior and environmental conditions. Investors, fund managers,
and regulators react to each other’s activities, often in feedback loops.

e Nonlinearity and feedback loops: Financial systems do not operate linearly.
Small events can trigger outsized effects due to feedback patterns. For
instance, a minor sell-off can snowball into a crash if it triggers margin calls’
and panic selling.? Feedback loops (reinforcing or dampening) are common,
as seen when banks restricting credit to preserve balance sheet liquidity
further depresses the economy, causing more losses in a vicious cycle.

e Interconnected networks: Financial entities are linked through webs of
relationships (counterparty links, asset correlations, cross-shareholdings,
etc.). A network view looks at how connections between agents transmit
and in some cases amplify risk. For example, the network of exposures
between banks can propagate losses during market stress, and index
inclusion can generate excess price co-movement between underlying
stocks (Claessens and Yafeh 2011).3 Likewise, exchange-traded fund (ETF)
ownership and arbitrage can generate co-movement in equity returns
beyond fundamentals (Da and Shive 2018; Israeli, Lee, and Sridharan 2017).

e Self-organization: Structure or order can emerge from the bottom up.
We see this in markets through such phenomena as industry clusters, the
emergence of new financial ecosystems (e.g., decentralized finance), or
the spontaneous formation of trading conventions. System organization
often grows organically—for instance, decentralized finance platforms have
evolved as a self-organizing network of users and protocols (Alonso 2024).

"When buying stock on margin (i.e., brokerage firm lends cash to the investor), investors must have a margin
account, using assets in the account as collateral at a designated margin level (FINRA 2023). Margin calls occur
when a brokerage house demands money to bring the equity in an investor's account back up to the margin level
(Clarke, de Silva, and Thorley 2013).

2Panic selling refers to a sharp sell-off of a stock or investment based on fear or overreaction to potential
decreases in price.

3The so-called index effect—where a stock price increases following inclusion in an index—may be diminishing
and is likely to be context specific (Greenwood and Sammon 2025; Chen, Singal, and Whitelaw 2016).

CFA Institute



e Resilience (and fragility): Complex systems may exhibit resilience (the
capacity to absorb shocks and reorganize), but they can also harbor hidden
fragility. Resilience analysis goes beyond simple diversification: It examines
structural vulnerabilities and how a system's interconnected relationships
and constraints might amplify or mitigate shocks. For example, two banks
might both appear well capitalized (individually robust), but if they are highly
interdependent via common exposures, the system may still be fragile
(see Pang and Shrimali 2024).

In the investment industry, some firms are starting to embrace complexity.
Institutional investors with long investment horizons are working to foster
system-level investing, which recognizes the interconnectivity and mutual
dependence between investments and healthy financial, environmental, and
social systems (Burkart, Ziegler, and Aiken 2024; Burckart and Lydenberg 2021).
Building a systems-level portfolio acknowledges that marketwide return drivers
explain a large share of long-term portfolio outcomes. Those drivers, in turn,
rely on collective efforts to self-organize in ways that mitigate risk and boost
the resilience of interdependent financial, environmental, and social systems
(Lukomnik and Burckart 2024).

Stakeholders in wealth management have also advocated for systemic
investment frameworks. Within wealth management, the focus is on identifying
leverage points within the system, where targeted investments can create
outsized effects, and synergistic investments that create value through
fostering enabling conditions (i.e., conditions that promote certain behaviors
over others) and coordinated amplification of returns across asset classes
(Tews, Jay, Andersen, and Paetzold 2025).

With respect to regulators, the Federal Reserve Bank of New York (2007, p. 5)
acknowledged that “the notion of systemic risk in the financial system bears

a strong resemblance to the dynamics of many complex adaptive systems in the
physical world." Market instability is increasingly seen as a product of networked
interactions; in practice, this has meant augmenting stress tests and oversight
frameworks with models of network contagion, feedback loops, tipping points,
and resilience (Battiston, Farmer, Flache, Garlaschelli, Haldane, Heesterbeek,
Hommes, Jaeger, May, and Scheffer 2016). The Financial Policy Committee at
the Bank of England also acknowledged the need to understand contagion and
amplified effects in densely connected financial networks (see Bank of England
2024). In order to meet these goals, the Bank of England identified current and
future applications of agent-based modeling in central bank research and policy
(Borsos, Carro, Glielmo, Hinterschweiger, Kaszowska-Mojsa, and Uluc 2025).

Introduction

CFA Institute |
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Looking ahead, we expect complex systems approaches to play an increasing
role in tackling new challenges, such as climate-related financial risk, fintech and
decentralized finance ecosystems, and cybersecurity risks. These domains all
involve networks of interactions, adaptive agents, and potential tipping points
and regime changes, making them well suited for complexity-informed analysis.

Even so, analyses based in complex systems have yet to see widespread
adoption across the investment industry. Academics in economics and finance
have advocated incorporating complex systems-based approaches into
standard financial analysis and investment practices. For example, J. Doyne
Farmer (director of complexity economics at Oxford) and W. Brian Arthur (at

the Santa Fe Institute) emphasize that traditional financial models often miss
critical dynamics, such as nonlinearity and emergent phenomena (see Farmer
2024; Arthur 2015). They argue for analytical tools, such as network analysis and
agent-based modeling—adopted from physics, biology, and other disciplines—to
be applied to investment and financial regulation (Battiston et al. 2016).

With this goal in mind, this report introduces key concepts in complex systems
analysis. The first half of the report focuses on how a systems analysis can
transform our understanding of financial markets and systemic risk. The second
half introduces modeling techniques commonly used to analyze complex
systems that are well suited for investment and risk management assessments.
Importantly, adopting a complex systems view moves us forward by challenging
core assumptions in traditional financial analysis and offering alternative tool
kits that can be applied to understand, forecast, and strengthen capital markets.

CFA Institute



FINANCIAL MARKETS AS COMPLEX
SYSTEMS

Neoclassical economics has been the standard of practice for over a century
(Neck 2022). It assumes agents are rational and that their aggregated behavior
drives markets toward equilibrium. In this view, markets function efficiently to
balance supply and demand, where deviations (e.g., mispricings and bubbles)
are anomalies. However, many notable economists—Thorstein Veblen, Joseph
Stiglitz, Joan Robinson, and Friedrich Hayek, among others—have pointed out
that these assumptions often fail to match the observed behaviors of individuals
and markets.* Investors do not always act rationally in the real world; they
exhibit biases, possess incomplete information, and are influenced by each
other. Likewise, markets often exhibit persistent deviations from equilibrium
(trends, cycles, crises) that are not mean-reverting.

These nontrivial statistical features of market behavior observed across financial
instruments, assets, and time periods are often referred to as stylized facts.’
Cont (2001) conducted a noteworthy metareview of empirical studies of asset
returns, identifying eleven distinct stylized facts across decades of research.

A subsequent study by Ratliff-Crain, Van Oort, Koehler, and Tivnan (2025) found
8 of the 11 stylized facts persist in modern US stock markets despite significant
regulatory shifts and technological progress (see Exhibit 2).

The identification of stylized facts indicates the need for alternative narratives
of market behavior that explain why these empirical regularities emerge in
financial data.

Part of the answer lies in the tendencies of human behavior to exhibit patterns
that fail to conform to assumptions of rational equilibrium models. Herbert A.
Simon (1955) proposed that individuals aim for satisfactory solutions rather
than optimal ones, given cognitive and information limitations—a term that
became known as bounded rationality.® In finance, this means investors might
follow norms or rules of thumb (see Simonian 2025), and their decisions can
be inconsistent or biased, as demonstrated by Kahneman and Tversky's (1979)
work on prospect theory, which describes how individuals weigh potential
losses and gains differently under varied conditions. If agents are not strictly
rational, how should we expect markets to behave?

“See Veblen (1898), Robinson (1969), Stiglitz (1987), Dixit and Stiglitz (1977), Hayek (1945), and von Hayek
(1937). Additionally, Kenneth Arrow, known for his contributions that facilitated the dominance of general
equilibrium theory in economics, later participated in discussions of complexity economics and acknowledged
the discrepancies between equilibrium as an ideal and the realities of market behavior (Arthur 2019).

SMore precisely, stylized facts refer to “stable patterns that emerge from multiple empirical data sources after
abstracting from the minutia of the evidence” (Oldham 2019, p. 2) that “any putative theory of markets ought
to explain” (Buchanan 2012).

¢Simon (1962) also directly contributed to the study of complex systems in his article “The Architecture
of Complexity.”

© 2025 CFA Institute. All rights reserved. | 7
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Exhibit 2. Stylized Facts in US Stock Markets

Stylized Fact Description

Absent linear autocorrelation A linear relationship is not found between a present return and past
returns (except for very short, intraday horizons).

Heavy tails Return distributions exhibit more extreme outcomes than predicted by
a normal distribution, often displaying power-law or Pareto-like tails.

Aggregational Gaussianity Return distributions differ at different timescales such that distributions
are nonnormal at short time intervals and more Gaussian (normal) as
returns are aggregated over longer time horizons.

Intermittency At any timescale, returns display a high degree of variability. “This is
quantified by the presence of irregular bursts in time series of a wide
variety of volatility estimators” (Cont 2001, p. 224).

Volatility clustering Large changes in asset prices (up or down) tend to be followed by more
large changes, and small changes are followed by more small changes,
creating periods of high or low volatility.

Conditional heavy tails “Even after correcting returns for volatility clustering (e.g., via
GARCH-type models), the residual time series still exhibit heavy tails”
(Cont 2001, p. 224).

Slow decay of autocorrelation Although asset returns may exhibit little autocorrelation, the magnitude

in absolute returns of returns (absolute or squared) shows a slowly decaying positive
autocorrelation, roughly following a power law, signaling long-range
dependence and persistent volatility clustering.

Volume/volatility correlation Trading volume is correlated with measures of volatility.

Source: Ratliff-Crain et al. (2025).

One way to answer this question is by analogy to ecosystems (see Thinking
Ahead Institute 2017). In ecology, an ecosystem consists of diverse entities
(e.g., species) interacting within an environment, leading to changes in species
population, competition, and adaptation. Crucially, an ecosystem does not
always settle into static equilibrium—it can cycle or suddenly shift if conditions
change (think of predator-prey cycles or invasive species overgrowth, which can
force native plants and animals to alter their behaviors). In an analogous way,
financial markets can be thought of as an ecosystem of agents and strategies
(see Farmer 2024). Investors, traders, institutions, and regulators continuously
adjust their behavior in response to the collective outcomes of past actions
(Lo and Zhang 2024). In this sense, markets, like ecosystems, are constantly
evolving.

Investors exploit market inefficiencies as they emerge by adopting new
strategies, whether switching from momentum to value, for example, or by
tactical asset allocations. But these adjustments of individual portfolios produce
subsequent higher-level activity at the market level (e.g., market volatility) that
can create mispricing opportunities to exploit, generate new risks, or stimulate
demand for other investment strategies. This back-and-forth influence between

8 | CFAInstitute



Financial Markets as Complex Systems

activities of market participants and emergent market behavior can lead to the
deviations from normal distributions observed in stylized facts that cannot be
adequately captured in traditional financial models. New techniques are needed
to account for changes in market prices and to create accurate forecasts (Farmer
and Geanakoplos 2009; Barbrook-Johnson, Mercure, Sharp, Pefiasco, Hepburn,
Anadon, Farmer, and Lenton 2024). A state of equilibrium, therefore, cannot

be assumed when adopting a complex systems view of markets. It may occur
under certain conditions, but it is one possible state among many.”

Market Insights for Investors and Investment
Professionals

If we view capital markets as complex ecology-like systems, we gain unique
insights into investment strategies that would otherwise be missed. Specifically,
viewing capital markets as complex systems offers new insight into investor
behavior and market anomalies. By reframing market and investor behaviors
through a complex systems lens, investment professionals can more easily
identify and describe events in the market that fail to adhere to assumptions of
equilibrium or efficient price movements. Next, we discuss key issues investors are
likely to encounter when analyzing markets through a lens of complex systems.

Herding Behavior

If we treat investors as agents who observe and adapt to market conditions and
the behaviors of other investors, it is unsurprising that herding occurs in the
market. Herding is defined as a group of investors trading in the same direction
over a period of time (Nofsinger and Sias 1999). More specifically, it describes
large groups of agents (i.e., investors) acting in unison without central control.
Investor herding behavior can occur for a variety of reasons (see Hirshleifer and
Hong Teoh 2003). Some investors may deliberately follow other investors in
purchasing securities by, for example, tracking momentum.® Other investors
may inadvertently herd following the release of new information or react to
the same changes in fundamental factors (Spyrou 2013). Regardless of the
dominant strategy, if enough investors start buying into a rising market, their
collective action can increase security prices and further validate the trend.
This positive feedback loop can lead to self-reinforcing price movements and
eventual bubbles.

7Complexity researchers have used agent-based models to identify which analytical regime, traditional equilibrium
or complexity, is best suited under varying market conditions. They found that in an environment where investors
adapt slowly to new observations of market behavior, the market converges to a rational expectations regime
where traditional equilibrium models prevail; however, as traders rapidly adapt to new market observations—as is
often observed in real investment scenarios—greater trading heterogeneity emerges and the market self-organizes
into a complex regime (LeBaron, Arthur, and Palmer 1999). Since this landmark research, findings have upheld

the general conclusions of a regime shift from a homogeneous rational expectation equilibrium to a complex
heterogeneous regime, though updated models indicate this shift occurs at faster learning rates than initially
proposed (Ehrentreich 2004).

8Momentum strategies focus on buying or selling based on past returns of the stock, focusing on buying recent
winners and selling recent losers. This form of herd behavior would not be rational under the efficient market
hypothesis, which assumes market prices reflect all available information (Bikhchandani and Sharma 2000, p. 282).

CFA Institute | 9
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The feedback loop generated by herding can only be indirectly captured by
traditional analyses, such as general equilibrium models, where investors
maximize individual utility. Stated differently, if we assess every investor in
isolation (or as the aggregated sum of isolated investors), it is impossible to
fully anticipate the impacts of their interactions. As observed in a report from
Thinking Ahead Institute (2017, p. 2), “Investors are inclined to assess the likely
impact of their actions in isolation and therefore potentially miss the additional
impact from other investors acting in a similar manner." However, techniques
used to study complex systems are oriented around simulating multiple
heterogeneous agents that interact and self-organize into groups, generating
emergent, higher-level effects (often in the form of stylized facts).

Using agent-based models (ABMs) (discussed later in this report), the impact
of herding behavior can be analyzed.? ABMs have been used to simulate how
herding in household borrowing can lead to market boom and bust cycles,
recreating observed housing price volatilities before, during, and after a
housing market crash (Glavatskiy, Prokopenko, Carro, Ormerod, and Harre
2021; Geanakoplos, Axtell, Farmer, Howitt, Conlee, Goldstein, Hendrey, Palmer,
and Yang 2012). Likewise, heavy-tailed stock price distributions consistent

with market data were successfully recreated by simulating randomized
communication channels between investors; these communication channels
led to the formation of clusters of agents that followed each other’s investment
behaviors, which resulted in power-law distributions of asset prices (Cont and
Bouchaud 2000). In essence, systems modeling allows analysts to see how
boundedly rational investor decision making, including herding behaviors, leads
to the emergence of key features of the stock market, including the previously
listed stylized facts (Shapira, Berman, and Ben-Jacob 2014). By capturing
realistic statistical features of the market, these models may assist with
anticipating and scenario-planning future impacts of herding in the market.

Network Effects in Asset Pricing

Network effects in asset pricing refer to situations in which the value or
performance of an asset is influenced not just by fundamentals but also by
the interconnectedness of markets. Modern markets have strong network
characteristics due to correlations between assets, companies, sectors,
and investors (see Pacelli 2025). For instance, consider how index funds
and ETFs connect assets: When money flows into or out of a market-
capitalization-weighted index fund, all stocks in the index experience buy or
sell pressure simultaneously according to their weight in the index. Linked
by index membership, the underlying portfolio assets are thus transacted
together algorithmically irrespective of fundamental value. The rise of index-
based products has therefore strengthened the links between previously
uncorrelated assets, as evidenced by stocks with high passive ownership/
index membership—yet from different sectors and diverse underlying

?A classic example is using ABMs to explain and predict the coordinated flying patterns of a murmuration or large
flock of starlings.

CFA Institute
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business models—collectively displaying rising betas (Brightman and Harvey
2025). When enough trades occur algorithmically, the market becomes

less elastic, generating heavy-tailed return distribution swings, increased
idiosyncratic volatility, and elevated sensitivity to marketwide shocks (Boothe
and Subedi 2024; Héfler, Schlag, and Schmeling 2025).

Along with the rise in index investing, markets have seen an increased overlap

in asset holdings between investors.’® A commonly referenced outcome of
portfolio overlap is the potential to transmit financial distress. If two institutions
share a common asset, the immediate liquidation of the asset by one institution
will impact the asset price and portfolio of the other institution (Braverman and
Minca 2018). As more investors are linked to a common asset, dependencies
arise not just between assets within a single portfolio but also between different
investors (e.g., banks, mutual funds, and pension funds) and their portfolios.

Another example of interconnectedness comes from a study by Chen, Wu,

Li, Bao, and Koedijk (2024), which suggests that information diffusion on
social media platforms is highly associated with the co-movement of excess
stock returns. This finding indicates that mapping the topology of information
diffusion across distributed investor networks may be relevant for portfolio
construction and risk management.

In short, understanding the effects of highly networked interactions is crucial if
financial markets are treated as complex systems. Such techniques as network
analysis and agent-based modeling have been used to capture asset and
investor interconnections, often in the context of risk analysis (see Konstantinov
and Fabozzi 2025; Bookstaber, Paddrick, and Tivnan 2018). Examples of both
techniques can be found later in this report.

Regime Shifts and Adaptation

Approaching financial markets as a system allows analysts to anticipate and
observe regime shifts in financial markets. Inspired by “phase transitions” in
physics, regime shifts appear as changes in the qualitative behavior of the
whole system due to an often very small change in some parameter (Harré
and Bossomaier 2009). “In other words, as new technologies, policies, or
geopolitical factors emerge, long-established statistical relationships and
market behaviours can shift (i.e., inducing abrupt structural changes in time-
series data, invalidating prior assumptions of stable trends)” (Hepburn,

Ives, Loni, Mealy, Barbrook-Johnson, Farmer, Stern, and Stiglitz 2025, p. 3).
Understanding regime changes is crucial for both anticipating market behavior
and determining the resiliency of financial markets.

19See Gualdi, Cimini, Primicerio, Di Clemente, and Challet (2016) for an analysis of US institutional holdings from
1999 to 2013; Kim (2021) for evidence of overlap from the South Korean equity fund market; and Koide, Hogen, and
Sudo (2022) for a review of portfolio overlaps between Japanese financial institutions and global investment funds.
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As part of the system, investors learn and adapt to changing conditions.

For example, after the 2008 Global Financial Crisis (GFC), many investors
became more risk averse, focusing on downside protection. This adaptive shift
influenced market behavior in subsequent years (e.g., a sustained preference
for lower-volatility stocks; see Torga, Roma, Roma, Ferreira 2023). But as
memories of the crisis faded and new opportunities (such as tech startups)
arose, risk tolerance grew again. Market regimes, therefore, emerge not just
as the backdrop for investors to consider but also as the consequence of
investor behavior and risk tolerance. It is this ongoing dynamic and feedback
between market conditions and investor actions that leads to market regime
shifts, whether from high fear to high risk appetite or from bear to bull markets.
Understanding and anticipating these transitions can improve investment
strategy implementation and inform timing.

Regulatory bodies also evolve, leading to the rise and fall of regulatory trends
and frameworks. Lukomnik and Hawley (2021), for example, discussed the
advent of a stewardship code in the United Kingdom or the SEC Form N-PX
proxy disclosure requirements in the United States as regulatory regime shifts.
Other regime changes include broad adoption of transition finance policies
(see Mak and Vinelli 2024; Hall, Foxon, and Bolton 2017) or the surge of
organizations, coalitions, and initiatives promoting net-zero investment goals."
Indeed, climate mitigation policy regime shifts indicate broader concern about
potential tipping points and abrupt transitions into new environmental and
economic regimes (Hepburn et al. 2025).

Taking a complex systems approach encourages us to go beyond considering
investors or assets in isolation and directs attention to interaction patterns.
These patterns include which strategies reinforce or counteract each other, how
diverse micro-level behaviors emerge as macro-level outcomes, where critical
thresholds may lie, and what new regimes will replace old ones.

How Can Complex Systems Be Used in Portfolio
Management?

A complex systems approach is not itself an investment strategy; rather, itis a
way of conceptualizing and investigating market phenomena. Even so, adopting
a complex systems lens can change the way asset owners and managers
approach investing by allowing them to incorporate key aspects of complex
systems, such as interconnection and adaptability, which are particularly
relevant to dynamic portfolio construction and multifactor approaches.

A list of organizations associated with net-zero investment frameworks is available at https://rpc.cfainstitute.org/
topics/net-zero-investing/who-is-developing-the-net-zero-investment-frameworks.
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Financial Markets as Complex Systems

Traditional single-factor and smart beta strategies’? have evolved into more
complicated factor timing and multifactor portfolios, requiring techniques that
capture ongoing changes in factor dependencies (Jacobs, Levy, and Lee 2025).
For example, within a multifactor portfolio, factors may interact or be highly
positively or negatively correlated or uncorrelated at different times, demanding
attention to regime-switching signals and agile reallocation and rebalancing

in response to changing market conditions, economic outlook, or investment
goals (Backhaus, Isiksaul, and Bausch 2022; Shu and Mulvey 2025). Investment
products have also evolved, signaled by the rise of multifactor index funds,
which dynamically allocate capital among multiple traditional factors (e.g.,
momentum, value, minimum volatility; see Doyle and Hayman 2024; Amenc,
Goltz, and Sivasubramanian 2016; Amenc, Ducoulombier, Esakia, Goltz, and
Sivasubramanian 2017). Due to its emphasis on interconnected networks and
nonlinear dynamics that produce systemwide effects, complex systems analysis
may aid in measuring and forecasting risk-return and asset interactions within
these dynamic, multifactor strategies.

We also see the relevance for new complexity-driven methodologies as some of
the largest institutional investors move away from fixed-weight strategic asset
allocation (SAA) and toward a total portfolio approach (TPA) (Thinking Ahead
Institute 2019). TPA promotes an integrated view of the portfolio as a dynamic
balance sheet where every investment decision is evaluated in terms of its
marginal impact on total fund risk, liquidity, return, and flexibility (Elkamhi and
Lee 2025). Managers consider dynamic factors/exposures (beyond traditional
Fama-French factors) across interdependent and overlapping asset classes that
enhance the fund's overall portfolio risk and return profile (CAIA Association
2024). Whereas SAA is built on modern portfolio theory and capital market
equilibrium models that construct portfolios based on expected returns and
volatilities for each asset class, TPA demands market monitoring tools that

can provide regime-aware assessments and portfolio construction tools that
can transverse asset class silos (Elkamhi and Lee 2025). Complex systems
approaches may complement TPA with a science-based framework that accords
with TPA's need to model networks of moving parts spanning asset classes,
public and private markets, and regime shifts, ultimately enabling dynamic and
adaptive portfolio strategies.

2Smart beta strategies refer to a range of index-based investment products that incorporate factor exposures and
are generally long only, though the term is used inconsistently (Doyle and Hayman 2024).
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Complex Systemic Risk

In a financial context, systemic risk refers to “a risk of disruption to financial
services that is caused by an impairment of all or parts of the financial system
and has the potential to have serious negative consequences for the real
economy” (Caruana 2010). Of particular concern are possible market crashes
or systemwide crises affecting the real economy. However, there is neither

an established rulebook for what kinds of shocks may be relevant nor ideal
methods for calculating the effects produced by those shocks. Disruptions to
a financial system, for example, may be caused by endogenous factors, such
as a bank collapse or credit defaults, or by exogenous factors, such as political
turmoil or extreme weather events.”

In addition, no standard measure or quantification of systemic risk exists, thus
generating policy debates surrounding best practices for evaluating systemic
risk (Dijkman 2010). Market-based measures of systemic risk include conditional
value at risk (CoVaR) and marginal expected shortfall (MES); both are derived
from traditional risk estimates, such as value at risk (VaR) or expected shortfall
(ES)."* Though used in practice, these measures inadequately capture the full
complexities of systemic risk.

Systemwide VaR, for example, is more than the sum of the CoVaRs of
institutions. Although “CoVaR may provide a realistic approximation for smaller
banks,”" it “cannot capture the heteroscedasticity characteristic of financial
assets, which may severely underestimate systemic risk” (Ellis, Sharma, and
Brzeszczynski 2022). Likewise, CoVaR and MES alone are “unlikely to detect
asymptotic tail dependence,” which is fundamental for any systemic risk
measure (Basilio, Oliveira, and Mahmoudvand 2020). As Hoffmann (2017, p. 184)
described,

Standard risk models cannot accurately model the risk posed

by especially rare, systemic events, as the number of financial
crises in the past two decades have shown. . .. Not only have
such rare events occurred far more frequently than predicted,
but they have brought with them strong interdependencies
between institutions and rapidly increasing correlations between

*What counts as “endogenous” and “exogenous” are relative to where one wishes to draw the boundaries
of a system. They are not absolute categories.

4CoVaR captures the VaR of the financial system “conditional on institutions being under distress” (Adrian and
Brunnermeier 2008, p. 1). Both CVaR and CoVaR are sometimes expanded as “conditional VaR" and are based on
value-at-risk concepts, but the “conditional” differs in each case: In CVaR (conditional value at risk or expected
shortfall), it means the expected loss given that losses exceed the VaR threshold for an individual position or
portfolio; in CoVaR, it means the VaR of the system conditional on another institution’s distress. CVaR is a tail-risk
measure used in portfolio risk management, while CoVaR is a systemic risk measure accounting for spillover risks,
mainly used in financial stability studies and regulatory contexts.

MES refers to the expected equity loss of a financial institution conditional on the market or sector being in
distress—specifically, when the aggregate return falls into its worst g% tail of the loss distribution (Acharya,
Pedersen, Philippon, and Richardson 2017, p. 3). VaR is "a measure of the size of the tail of the distribution of
profits on a portfolio or for an organization” (Chance and Edleson 2024, p. 31). ES offers the tail conditional
expectation by integrating all losses with low probabilities across the distribution tail (Hoffmann 2017).
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markets, for example, that would, under ‘normal’ circumstances,
be deemed unrelated. . . . Conventional risk models have,
therefore, all in all failed exactly where they were needed most
(namely, when to address extreme risks) since they have proved
to be conceptually inappropriate.

Contagion is commonly discussed in the context of regulatory analyses

of systemic risk. Contagion occurs when the instability of an institution

(e.g., a firm, market, or sector) spreads to other parts of the financial system,
producing negative effects throughout the system and instigating a systemwide
crisis (Smaga 2014, p. 11). Systemic risk can, therefore, be materialized as a
contagion event.

The simplest forms of contagion may be represented as a domino effect.

For example, a default by a major bank could immediately cause losses at

other banks that lent it money, potentially causing those banks to fail, in turn.
Empirical evidence shows that even mild market crashes in one country can
increase the probability of crashes elsewhere as dominos fall (Fauzi and Wahyudi
2016; Markwat, Kole, and Van Dijk 2009).%

However, real financial contagion is often more complex. Propagation of
negative effects throughout a system is often highly dynamic, nonlinear,

and multidirectional, requiring more advanced techniques to model these
interactions (Pacelli, Canana, Chakraborti, Di Tommaso, and Foglia 2025). When
a shock hits, relationships among market participants can change amid the
crisis. For example, once Bank A starts struggling, Bank B might preemptively
cut off credit to Bank C out of fear, even if Bank C was not yet directly affected.
Meanwhile, Bank C might sell assets to raise cash, pushing prices down

and hurting other firms holding those assets. These interactions can form

a web of changing feedback loops that include indirect effects (Quirici and
Moro-Visconti 2025).

Real financial networks also exhibit self-organization and adaptation, requiring
ongoing assessments at the system level. Pacelli (2025) noted that if regulators
only analyze each institution in isolation (a purely microprudential view),

they critically miss the systemic picture: The system can self-organize into

a fragile state even if each part seems stable. Neglecting the diverse web

of interconnections can lead to “inappropriate, superficial and pro-cyclical
regulatory prescriptions”’—essentially, regulations that might inadvertently
increase risk in the system by not accounting for complex interactions

(Pacelli 2025, p. 14).

Macroprudential regulation, born out of the GFC, seeks to acknowledge features
of network interconnection. Such policies aim to generate systemic resilience
by assessing the structural integrity of the financial system as a whole and

®Markwat et al. (2009, p. 2000) acknowledged that “there are indeed higher-order dependencies in the dynamic
patterns of crashes, especially concerning the more severe crashes” that do not strictly follow patterns of linear
autocorrelation.
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preventing the emergence of systemic crises. Still, even aggregate indicators
of financial vulnerability used by regulators, central banks, and international
institutions may miss important aspects of the complex financial system.

For example, such measures as the Financial Conditions Index, the Financial
Stress Index, or the Composite Indicator of Systemic Stress (CISS) may be
useful to gain a combined snapshot of financial vulnerabilities; however, they
cannot model future regime shifts or directly capture adaptive behavior in
market participants as a crisis unfolds. Indeed, news of increased systemic
risk could catalyze further investor panic, prompting sell-offs that lead to new
vulnerabilities—a self-fulfilling loop (Pacelli et al. 2025).

Being able to map these multilevel feedback effects within the system is

critical. Taking an example from Gai (2013), forced asset sales during periods

of market stress—whether due to fire sales or funding liquidity shortfalls—can
lead to losses that weaken banks' balance sheets. This, in turn, constrains their
capacity to extend credit, leading to a credit crunch that dampens consumption,
investment, and economic growth. As real activity deteriorates, borrower
defaults rise and asset values decline further, feeding back into the financial
system. Evaluations of systemic risk must therefore “address the non-linear
consequences implied by the two-way relationship between the financial system
and the real economy, together with the sizable externalities implied by the
interconnectedness of financial firms for the system as a whole” (Gai 2013, p. 3).

In sum, systemic risk analysis must be sensitive to the highly interconnected
dynamics of financial systems. It requires continual monitoring not only of
individual financial entities but also of the network of dependencies that
signal how shocks might cascade and amplify through patterns of feedback,
emergence, and self-organization. Later, we introduce techniques used to
model these dynamics to better understand and mitigate systemic risk in
practice.

Systemic Risk vs. Systematic Risk

Because systemic risk is about systemwide effects, it differs from risks affecting
a single entity, as well as systematic risk (market risk) in a portfolio context.
Systematic risk typically refers to broad market risk that cannot be diversified
away (e.g., the risk related to macroeconomic factors, such as interest rates or
inflation). Typically, systemic risk is the focus of regulators, while systematic risk
is the focus of investors pricing assets.

In the CAPM, for example, systematic risk is captured by beta, which
measures an asset's exposure to market movements." Investors expect

to be compensated for bearing systematic risk—hence the concept of an
equity risk premium (the excess return on the equity market over risk-free
assets). Systemic risk, in contrast, is about the system's structural integrity.

6 More precisely, beta measures the sensitivity of a stock’s return to the equity risk premium.
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It concerns regulators because it can lead to system collapse, not just asset
price fluctuations.

Despite their differences, the two can be related. A systemic event such

as a banking panic can trigger the realization of systematic risk, leading to
broad market sell-offs as investors withdraw en masse or banks hoard cash,
potentially freezing markets. Conversely, elevated systematic risk (i.e., high
exposure of assets to common marketwide factors) can amplify the impact of
adverse shocks. When widespread declines in asset prices occur, the losses
can propagate stress through financial institutions with real-economy feedback
loops, intensifying a systemic crisis (e.g., credit contractions and reduced
consumption leading to widespread capital crunches, financial instability, and
economic distress), which can further impact market prices (Borio, Drehmann,
and Xia 2018; von Peter 2009).

Asset owners are increasingly acknowledging the interplay between the
systematic risk in their portfolios and the systemic—often existential—risks
imposed by such threats as climate change, geopolitical instability, and
socioeconomic inequality (see Impact Management Platform 2023). Although
system-level investors may focus on different environmental, social, and
governance (ESG) aspects, they share a commitment to the belief that investors
not only respond to investment conditions but also directly contribute to
shaping those conditions. In other words, investors do not just passively
capture market beta; they actively influence how the market performs by
managing systemic risks as systematic risks and building long-term resiliency
into capital markets (Gordon 2021)."

Asset owners may exhibit influence through portfolio allocation strategies,
stewardship activities, impact investing, and engagement on regulatory
policies, all of which demand a systems-based lens to realize market impact and
enhance long-term value creation. Such groups as The Investment Integration
Project, the Predistribution Initiative, the Institute for Energy Economics and
Financial Analysis, and the Shareholder Commons, as well as UN-supported
Principles for Responsible Investment (PRI) signatories, among others, have
launched initiatives aimed at facilitating system-level investing (PRI 2024;

PRI forthcoming).

Complex systems analysis offers a framework under which regulators and
investors can come together to understand how systemic risk and systematic
risk mutually impact one another. As an interdisciplinary field, complex systems
sciences have a history of fostering engagement between disciplines and

point to opportunities for increased collaboration between asset owners,

7Lukomnik and Hawley (2021, p. 41) described those who adopt this view as "beta activists,” maintaining that

"in theory, the sum of all the investors’ expectations about any systematic risk (e.g., climate change, lack of gender
diversity, etc.) is built into the perceived riskiness of ‘the market.’ Therefore, if a beta activist can cause a reduction
in the perceived riskiness of a systematic risk, the entire market re-rates. That is similar to what happens when the
market re-rates a single security targeted by an alpha activist. However, because the systematic risk factor targeted
by a beta activist impacts the entire marketplace, even a small systematic risk re-rating can have hundreds of
billions of dollars of impact.”
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Exhibit 3. Resilience through a Systems Lens
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policymakers, and investment professionals by bringing together concerns,

Emergent outcomes
in the form of new
risks reshape agent
behavior

Agents interact,
forming
connections and
interdependencies

Emergent Resilient Network
Qutcomes Systems Effects

Nonlinear and
feedback
relationships
produce higher-level
emergent outcomes

Interconnections
enable feedback
loops and amplify or
dampen shocks

perspectives, data, and forecasting techniques.

Exhibit 3 shows how enhancing resiliency from a complex systems lens
emphasizes the capacity of financial systems to absorb shocks, adapt to

disruptions, and recover without collapsing. This perspective acknowledges
the inherent unpredictability and interconnectedness of financial ecosystems
and shifts the focus toward strengthening underlying structures and enabling

flexible, adaptive responses to emergent risks and nonlinear dynamics.
In essence, building resilient systems requires attention to the following
aspects of the system:

e Adaptive agents: Systemic risk in a complex system is dynamic, with agents
adapting and evolving, sometimes generating new exposures as they adjust
their strategies in response to market conditions and regulations. This
process can make the system more prone to unexpected risk concentrations

and hidden vulnerabilities over time.

o Network effects: Rather than viewing institutions or entities in isolation,

complex systems analysis emphasizes the web of interconnections,

including direct and indirect ties, which can amplify or dampen shocks.

The emphasis is on how risk propagates through these connections,
as seen in network models.
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Nonlinear dynamics and feedback loops: Complex systems exhibit nonlinear
behaviors and feedback loops, where small shocks can sometimes lead to
disproportionate, cascading failures or, alternatively, be absorbed without
significant disruption. Relevant to this approach is the identification of
“tipping points,” where the system'’s state reaches a critical point prompting
aregime change.

Emergent outcomes: Agents (e.g., banks, funds, regulators) interact and
adapt to each other's actions, often leading to emergent patterns that can
be unpredictable (e.g., periods of heightened volatility or regime shifts).
These emergent patterns generate systemic risks that cannot be fully
estimated by the sum of individual risks.
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HOW TO MODEL COMPLEX FINANCIAL
SYSTEMS

The theoretical shifts embracing systems thinking in finance demand new
ways of modeling complex phenomena. In practice, market analysis methods
have often relied on the mathematics of calculus with stochastic differential
equations and regression models (Konstantinov and Fabozzi 2025). Though
these techniques alone may be sufficient for capturing simple multivariate
problems, many macroeconomic and market-level behaviors of interest to
analysts and regulators rely on key structural elements observed in complex
systems. In other words, to study complex financial systems, we need modeling
approaches that can stretch beyond assumptions of linearity and normal
distribution for how losses propagate through the system (Farmer 2024).
Traditional models—such as the CAPM, the Black-Scholes option pricing model,
or dynamic stochastic general equilibrium (DSGE) models—provide important
insights but typically require simplifying assumptions (e.g., representative
agents, linearization around equilibrium, or normal distributions) that make

it hard to simulate crises, contagion, or adaptive behavior.

Combined with a new era of big data and computing power, we are starting

to see innovative techniques in the investment industry that do more than
explain features of complexity; they explicitly map and simulate the dynamics of
complex financial systems. Two of these approaches, agent-based modeling and
network theory, provide distinct yet complementary insights. ABMs simulate
interactions among heterogeneous, adaptive agents to reveal emergent
phenomena, such as herding behavior, which can lead to volatility clustering.
Network theory maps structural interconnections, highlighting contagion
channels, systemic vulnerabilities, and key leverage points.

Although often used in practice for distinct purposes, these methods capture
complementary perspectives. Within a system, agent interactions will
endogenously form network patterns (e.g., hubs of influence or feedback loops)
that constrain their subsequent behaviors, permitting further evolution of the
interaction dynamics that lead to changes in the network structure. What this
means for the practitioner is that simulating complex systems requires attention
to both the dynamics of individual agent interactions and the structural

(i.e., network) features that emerge from those interactions.

ABMs and network theory are just two of several commonly used modeling
techniques in systems sciences (see Appendix B). While no single technique
can model every aspect of a system of interest, each can highlight important
features of the system that can be used to inform portfolio construction or
systemic risk modeling. In practice, techniques can be combined or used in
complementary ways to better understand and simulate the complex dynamics
of a system. Ultimately, however, these modeling techniques all reflect a
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burgeoning theoretical shift away from models of static equilibrium and efficient
markets and toward embracing financial markets as complex adaptive systems.

Agent-Based Models to Capture Complex Dynamics

Agent-based models (ABMs) are computational models that simulate the
interactions of autonomous "agents” to assess their effects on the system.
ABMs model individual agents (which could be investors, banks, traders, etc.)
with certain behaviors or decision rules. The ABM's topology represents the
interactions between agents that can unfold according to their defined rules.
During the simulation, the agents interact step by step (often randomized and
repeated thousands of times). The goal is to see what emergent phenomena
result from the bottom-up interactions. As such, ABMs can capture multiple
features of complex systems, including heterogeneous adaptive agents,
emergence, and self-organization.

Thus, ABMs break away from traditional methods, such as DSGE models, many
of which assume a unitary representative agent (Bookstaber 2017). Instead,

a core feature of ABMs is the ability to model interactions between many
heterogeneous agents with different risk preferences, investment strategies,
or information. Agents interact within an environment, which can exogenously
or endogenously introduce shocks, and analysts observe how the system
evolves over time. Crucially, ABMs do not require the system to settle in
equilibrium: They can generate booms, busts, cycles, or chaotic fluctuations
as outcomes. As such, ABMs have been used across disciplines to model highly
dynamic and volatile behavior, such as disease outbreaks and crowd behavior
in crisis situations.

Because of their bottom-up design, ABMs would be less suited to forecasting
the price of a particular asset, but they can be helpful in determining what
trading activities might move the prices of assets or generate business cycles,
price bubbles, clustered volatility, or the onset of “bear” or “bull” markets (Turrell
2016). A classic use of ABMs is to study material risk generated by contagion
effects and herd behavior (see Bookstaber and Sharma 2022). For instance, an
ABM might simulate a market where agents decide to buy or sell based on their
connections (e.g., social network influence) or in reaction to recent news events.
By manipulating how strong the herding tendency is, we can see at what point
and under what conditions a small shock might lead to a major crash.

In building an ABM, one must identify the types of agents, their decision rules,
and how they interact. These rules may be informed by data or theory. ABMs are
often used without perfectly fitting to data; they are exploratory. That said,
calibration to real market data can be performed or model parameters can be
selected to reproduce known patterns in market data. Common software used
to construct ABMs includes NetLogo, AnyLogic, Altreva Adaptive Modeler,
MASON, Repast, and GAMA Platform.
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Example: Agent-Based Stock Market Model
with Fundamental and Technical Traders

A simplified model by Sperka and Spisak (2013) assesses the influence of
transaction costs on the stability of financial markets. The computerized
simulation features two types of traders (agents): fundamental traders and
technical traders. Fundamental traders purchase assets when prices are below
their fundamental value. Technical traders buy based on recent price trends.
However, traders also communicate at random, and the more successful traders
(based on current and past profitability) can convince the other traders to adopt
their strategy.’® Agents can also change strategies independently, though at
much lower probabilities. As such, the number of traders with a fundamental

or technical strategy will change over time.

The base model runs using the computer simulation program NetLogo (see
Exhibit 4). It features 10,000 agents trading over 5,000 days. Model parameters
are located in the left panel of Exhibit 4 and are modifiable. The first three are
price dynamics parameters that represent how strongly prices react to excess
demand (a), how sensitive technical traders are to recent price signals (b), and
how strongly fundamental traders respond to the gap between the market price
and the fundamental value (c). Parameter d is a memory (discount) parameter,
epsilon is the likelihood a trader will switch strategies independently, and
lambda represents how strongly relative profitability differences influence
switching when traders meet. Sigma-alpha, sigma-beta, and sigma-gamma
represent stochastic parameters (introducing randomness or noise), and the
last three parameters are baseline interaction and market microstructure
calibrations.” The middle panel charts shown in Exhibit 4 represent evolving
price values, returns (log price changes), weights of technical trading strategy,
and probabilities for switching strategy. On the right side, fundamental (black)
and technical (yellow) traders are represented by color.

18Successful “convincing” occurs at probability K, defined in Sperka and Spisak (2013).

19See Westerhoff (2009) for a complete overview of the parameters adopted in Spidak and Sperka (2014).
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Exhibit 4. NetLogo Artificial Stock Market Simulation
with Fundamental and Technical Traders
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Source: Spisak and Sperka (2014).

Once the base model environment is established, transaction costs are
introduced at a constant value of 0.015, which has a direct impact on asset
prices. In the short run, this increases the number of technical traders and
decreases fundamental trading, as prices increase relative to unchanging
fundamental value, reducing the expected returns of fundamental traders.
However, as the model continues to run, technical trading becomes less
attractive, prices drop, and fundamental traders dominate, eventually leading to
lower price volatility and market stabilization. Sperka and Spisak (2013) run the
simulation once more at a higher transaction cost (0.03). Under this scenario,

a return to stability was not observed, and technical traders continued to
dominate, indicating that if transaction costs are high enough, technical trading
becomes more attractive than fundamental strategies and the market continues
to be unstable.
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Example: Simulating Banking Network Risk
with ABMs

The International Monetary Fund developed an agent-based model called
ABBA to analyze systemic risks in the banking system (Chan-Lau 2017). ABBA
simulates interactions between three types of agents: savers, loans, and banks.
Savers are distributed across global regions, each of which is dominated by
one bank. Following payments of principal and interest, savers may withdraw
their deposits from the bank and relocate to another region to open an account
with another bank. Savers accounts remain solvent as long as the bank does
not default. Loans are also distributed across regions, with each loan featuring
several risk characteristics (i.e., probability of default, risk weight, rating,
recovery rate in case of default, and fire sale loss rates). Based on the credit
risk characteristics of the loan, banks will produce a loan rate quote and lend
the amount as long as the bank can meet its capital and reserve requirements.
Meanwhile, each bank agent is making multiple business decisions based on its
financial health and regulatory environment. Banks consistently evaluate their
loan portfolio solvency, assess net income, optimize loan portfolio composition
to meet capital requirements, and decide whether to pay dividends (Chan-Lau
2017). In ABBA, therefore, banks are the primary agents that exhibit adaptive
behavior and can learn and modify as they go. The decision-making process of
banks can therefore influence the flow of interactions within the system.

As banks interact in the form of interbank lending, an endogenous network
forms (i.e., links are established between banks, loans, and savers). As the
simulation runs and banks modify their decisions following loan defaults and
indirect effects on capitalization, new network structures emerge. Analysts then
simulate shocks, such as a change in capital requirements or a liquidity shock
from savers withdrawing en masse, to see how the shock propagates.

Ultimately, ABBA is useful insofar as it can capture immense heterogeneity
(banks of different sizes/strategies) and adaptive behavior (banks reacting to
stress by deleveraging), illustrating how regulatory policy changes or shocks
can lead to nonlinear outcomes in system stability. Indeed, tightening capital
requirements might paradoxically increase short-term systemic risk if many
banks deleverage simultaneously but may also improve long-term resilience
(Chan-Lau 2017). Such insights are difficult to obtain from equilibrium models
but emerge naturally in an ABM. Central banks and regulators are increasingly
exploring ABMs like ABBA to complement traditional stress tests.

In some cases, ABMs use reinforcement learning to model agent behavior,
adding additional layers of adaptability and insight. In these models, agents
operate within a system of learning algorithms and reward structures that
guide activity. Agents learn and adapt their behavior as the system evolves
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under changing demands and conditions. Such models are useful in realistically
modeling the dynamics of pricing strategies and market competition (Alonso
2024). In addition, new “Al agents” with capabilities to follow complex, multistep
decision-making patterns could be integrated as simulated agents within

ABMs that would model more adaptive and potentially realistic interactions
(Borsos et al. 2025). For a comprehensive review of current applications of
ABMs in finance and economics, see Chudziak (2025). For a summary of ABMs,
see Exhibit 5.

Exhibit 5. Agent-Based Models Summary

Key Features

* ABMs are well suited to capture emergent market phenomena. A well-known example
showed that even if all agents trade with simple rules, their interactions can produce
heavy-tailed return distributions and volatility clustering, mirroring real markets
(LeBaron, Arthur, and Palmer 1999).

e Agents in ABMs are heterogeneous and can take up individual strategies or heuristics as
well as adapt their strategies as environments evolve (Bookstaber and Sharma 2022).

e ABMs can incorporate behavior rules drawn from behavioral finance or observed trading
patterns to model realistic bottom-up interactions. For instance, analysts could program
agents to underweight recent losers or to panic sell after a certain loss threshold.

¢ No requirement of equilibrium or closed-form solution: The model “solution” is the
simulated outcome.

memny  Example Use Cases

¢ Simulate how herd behavior or feedback trading can lead to market bubbles and crashes.

® Model traders with varying individual risk tolerance levels and trading strategies to see
how fluctuations in investor risk affect market trends and performance.

e Conduct dynamic stress tests (e.g., represent banks as agents who might withdraw lending
when their capital falls to see systemic liquidity impacts and amplification events).

e Run "what-if" scenario simulations (e.g., the introduction of a new tax) that can inform
policy creation and implementation.

Challenges

e Requires significant computational power. Large-scale simulations with many agents
(especially if each agent is complex) can be computationally heavy and slow. However,
increasing computing power can mitigate this issue over time.

e Sensitive to assumptions. Results can depend heavily on how agents are specified. If we
miss an important behavior or constraint, the model might mis-predict outcomes (for
example, omitting that agents have leverage limits could ignore a key feedback in a crisis).

e Can be difficult to calibrate and validate. Ensuring the agent rules are realistic and that
the model's output aligns with real data patterns is nontrivial. There is a risk of
“overfitting” to known outcomes or, conversely, using overly simplistic rules that fail to
capture realistic behaviors.
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Network Theory and Graph Models to Capture
System Structure

While ABMs are useful for capturing systemwide patterns that emerge

from dynamic interactions of heterogeneous agents, depicting the overall
structure of the system can be challenging. System structure is significant
to complex systems since the heterogeneity of agents implies that not all
system components possess equal importance and understanding of where
control points (hubs of influence or key leverage points) lie within the system
can surface hidden vulnerabilities or areas for intervention. Additionally,
simulating every dynamic interaction via an ABM is impractical, so mapping
key relationships within the system is an effective first step for determining
what parts of a system are most relevant for generating systemwide effects
of interest (e.g., market return, volatility, or crashes) and how information
or influence is distributed throughout the system.

Mapping the structure of a system is possible through network theory. Network
theory is an area of mathematics used to analyze relationships and interactions
of interconnected entities (Konstantinov and Fabozzi 2025). In practice, network
theory provides a set of techniques for analyzing graphs. Graph models consist
of nodes (vertices) and links (edges) connecting nodes. They range from simple
models containing a small number of nodes to widely distributed and highly
interconnected networks with weighted connectivities.

In finance, many structures can be represented as networks: interbank lending
networks, counterparty exposure networks, cross-shareholding networks,
payment flows, asset correlations, and so on. Each node might be a firm, bank,
asset, or country, and each link represents some connection, such as a financial
contract, correlation coefficient, or transaction. As such, network analysis
provides a systematic method for analyzing relationships and flows between
interconnected entities.

In practical terms, network analysis in finance often starts with constructing

a matrix of connections, referred to as an adjacency matrix. For instance, an
interbank network can be derived from exposure data: Matrix entry (i, j), for
example, would represent the amount bank i is owed by bank j. From this
adjacency matrix, the user can create a weighted graph and compute, for example,
systemic risk metrics or simulate defaults (see Konstantinov and Fabozzi 2025).

From there, network models allow us to use such metrics as connectivity,
centrality, clustering, and path lengths to understand the architecture of

a financial system. For example, centrality measures can identify which
institutions are “too central to fail” (because they serve as important hubs in
the network; see Hiiser 2015; Minoiu, Kang, Subrahmanian, and Berea 2014).2°

20See Rodrigues (2018) and Wan, Mahajan, Kang, Moore, and Cho (2021) for an overview of network centrality
measures. See also Lerman, Ghosh, and Kang (2010); Piraveenan, Prokopenko, and Hossain (2013); and Ghanem,
Magnien, and Tarissan (2019) for centrality metrics applied to dynamic or evolving networks.
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Clustering can reveal communities of banks or stocks that are tightly knit and
could have contagion within the cluster. Network paths might illuminate how

a shock could propagate from one node to another through intermediate
connections. As such, network models address the interaction structure across
many nodes. Even if initial edge weights are derived from linear measures (as
they often are in adjacency matrices), the heterogeneous geometry of the graph
(e.g., hubs, communities, bottlenecks) creates system-level behavior (or risks)
that may be nonlinear.

The application of machine learning techniques, such as deep learning,

on graph data has allowed for improved analyses of highly interconnected and
multidimensional networks, such as those of complex financial markets. Among
these techniques, graph neural networks (GNNs) have emerged as particularly
well suited for various graph-based tasks, including node classification, graph
classification, and edge prediction (Wang, Zhang, Xiao, and Song 2021).

In risk management, network contagion models complement traditional stress
tests. A stress test might assume one bank’s failure and then exogenously
impose losses on others. A network model, in contrast, would identify how

the failure causes losses through a web of endogenous exposures, possibly
uncovering nonintuitive contagion paths (such as Bank A's failure hurting Bank
C via Bank B's distress discussed earlier). The Office of Financial Research in the
United States, for instance, has worked on network models for the credit default
swap market to see how the default of one large counterparty would affect
others in the web of credit default swap contracts (Chen and Wang 2013).

Example: Stock Market Analysis Using Networks

Namaki, Shirazi, Raei, and Jafari (2011) used network analysis to examine both
a mature market, the Dow Jones Industrial Average (DJIA), and an emerging
market, the Tehran Stock Exchange (TSE), to see whether stock correlation
patterns have unique structural features. The researchers constructed a

stock correlation network where nodes represent stocks and edges represent
correlations. Both networks exhibited a “market mode,” captured by the largest
eigenvalue of the correlation matrix, reflecting the collective movement of
most stocks. The largest eigenvalue tends to surge during crises, signaling
stronger marketwide co-movement.?

21See Jolliffe and Cadima (2016) for an overview of principal component analysis, which is a linear dimensionality
reduction technique.
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However, Namaki et al. (2011) wanted to uncover genuine stock relationships,
so they used random matrix theory (RMT) to filter out the “market mode” from
the correlation matrices.?? For the DJIA, this process significantly altered the
mean correlation coefficient distribution, indicating that optimizing using raw
correlations can overemphasize systematic risk while obscuring idiosyncratic
features of the stocks. Results from the TSE analysis demonstrated scale-free
properties within the stock network, meaning that a few highly connected
"hub” stocks influence many others. These hubs are critical in understanding
the market's systemic risk profile and the impact of market shocks. By adjusting
correlation thresholds (what correlation value is enough to constitute an edge),
the authors demonstrated how the market connectivity structure can change,
which could influence asset allocation and portfolio diversification strategies.
Similar applications of network analysis could assist financial professionals

in identifying key points of market influence and systemic vulnerabilities.

Network models can also be applied at a micro level to better understand
portfolios or funds. For example, portfolio managers may use network
algorithms to enhance diversification, as demonstrated by the case study that
follows this section. Through identifying clusters of highly interconnected
assets, portfolio managers can restructure portfolios to avoid concentrating
assets within one cluster. This method can reveal hidden factor exposures that
a simple asset-based or sector-based classification might overlook; for example,
companies in different sectors may be tightly linked through supply chains

or co-ownership within major indexes and ETFs.

In summary, network theory offers powerful analytical tools to map and
evaluate the architecture of financial systems, shedding light on channels
of risk transmission that are often obscured in traditional aggregate models
(see Exhibit 6). This approach is becoming increasingly vital as financial
networks become more densely connected and systemically complex.

2RMT, originally developed to explain the energy levels of complex nuclei, is now used to filter noise in financial
time series (Daly, Crane, and Ruskin 2008). The technique involves comparing eigenvalues of an empirically derived
covariance or correlation matrix with those of a corresponding purely random matrix, thus allowing for the removal
or replacement of "noisy” eigenvalues.
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Exhibit 6. Network Theory Models Summary

— Key Features

® Represents key structural features of highly interconnected networks that exhibit amplification
or diminishing effects. For example, a “star” network—one central hub connected to many
periphery nodes—is vulnerable if the hub fails. A highly clustered network might trap a shock
in one cluster but keep it from spreading globally (or vice versa, if clusters are linked by a
few bridges).

e Can be used to identify changes in network structure (e.g., banks might alter trading partners,
leading to emergent hub structures). Ongoing monitoring of network clusters can help predict
where risks are forming.

 Different types of connections can be represented in separate layers (e.g., an overlap of a credit
network and a derivative network), which can interact. This is advanced but increasingly relevant
for assessing how a liquidity freeze (one network) can trigger fire sales (another network of
correlated assets), for example.

ey Example Use Cases

o Identify which bank failures would cause the greatest cascade, using network centrality metrics
or simulating default contagion (Jo 2012; Giansante 2010).

e Gauge how a disruption at a key node (such as a major bank that conducts clearing or a critical
supplier firm) could ripple through counterparties.

e Map how portfolios overlap via common asset holdings to see if many investors unwittingly
form an interconnected sell-off network (relevant for crowded trades and liquidity risk).

e Examine cross-border capital flows through a network of countries to see how financial shocks
could transmit internationally.

Challenges

e Connections are dynamic. Financial networks are not static. Connections form and dissolve over
time. Analyzing an evolving network (time-varying graph) is more complex than a static snapshot,
and many network metrics are harder to interpret as the network changes.

e Some parameters must be inferred. The “edges” in financial networks are often not directly
observable. For example, bilateral exposures between banks might be confidential. Analysts must
infer networks from partial data or proxies (e.g., using correlations as edges).

e Can be hard to interpret. Even if we can compute centrality metrics, such as closeness centrality™
or eigenvector centrality, ™ for firms in a network, translating that into an actionable risk
assessment or investment strategy can be tricky. There is also a danger of oversimplifying
(e.g., just because a bank is central does not guarantee its failure will be catastrophic; it depends
on the context and buffering mechanisms). Still, these metrics provide valuable signals.

*Closeness centrality is defined in terms of the average distance of each node to all others
(Rodrigues 2018).

**Eigenvector centrality is a measure of a node’s centrality (i.e., importance) given the centrality of
its neighbors (Konstantinov and Fabozzi 2025).
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CASE STUDY: NETWORK ASSET
ALLOCATION

This case study illustrates how network theory can be applied to asset allocation
purposes. We emphasize that this example is merely illustrative, where the
effectiveness of such methods depends on a multitude of factors, including the
asset class and the quantity of data available. Moreover, we offer this case study
as a demonstration of how to begin adopting systems thinking within traditional
portfolio management contexts. It does not reject established approaches, such
as mean-variance optimization; rather, it extends the norms of current practice
to incorporate network theory. While fully embracing markets as complex
systems likely means going beyond traditional financial approaches, both
conceptually and methodologically, we acknowledge the need for a starting
point—a place where practitioners can easily adopt new approaches that appeal
to a systems perspective. With this in mind, we developed the following case
study, which considers portfolio construction in the sovereign fixed-income
asset class. The code for this case study can be found by visiting the RPC Labs
GitHub repository at https://github.com/CFA-Institute-RPC.

Portfolio construction is central to the investment process, involving asset
allocation and security selection to achieve targeted returns. In the case

of fixed-income assets, the presence of highly correlated bond yields (the
expected yearly return on the bond until maturity) introduces diversification
risks. Specifically, if bond yields move closely together, the portfolio can face
heightened sensitivity to interest rate shifts or macroeconomic changes,
potentially magnifying risk exposure. Rising yields across correlated bonds lead
to declining bond prices, negatively impacting the portfolio's value. Conversely,
falling yields lead to an increase in portfolio value. Hence, the correlation of
bond yields can significantly influence portfolio risk.

While the amplification of gains or losses from high correlation in bond
yields can be individually assessed for a few assets, it becomes challenging
for hundreds or thousands of assets. One systematic approach to portfolio
construction that minimizes the risk associated with highly correlated bond
yields is a minimum-variance optimization. For selected assets, portfolio
weights are assigned such that the portfolio variance (representing the risk
objective) is minimized.?

However, issues may arise regarding the data used to derive portfolio weights.
Specifically, the optimization may assign weights based on abnormal bond
yields that are idiosyncratic to the specific sample period. This may result in
overfitting, where the allocation results in the minimum-variance portfolio

on in-sample data but is suboptimal on out-of-sample data. Overfitting can
decrease the robustness of backtesting when evaluating portfolio performance

2With additional constraints, including that the weighted returns of the portfolio equal a given value, portfolio
weights are nonnegative and the sum of all portfolio weights is equal to 1.

© 2025 CFA Institute. All rights reserved.


https://github.com/CFA-Institute-RPC

Case Study: Network Asset Allocation

based on historical data, where results are sensitive to noise. To address these
issues, we use network analysis, specifically a spanning tree methodology. With
a spanning tree, we identify key correlations between the historical movements
in bond yields, where the subset of correlations represents a network. Then,
from the network, we can use properties from the network topology to inform
constraints for bond holdings under the minimum-variance optimization.?
Using such approaches, the portfolio variance can be reduced by controlling

for portfolio weights assigned to highly correlated assets (as correlations with
volatility represent the covariance of bond yields), thereby reducing overfitting
from other correlations. Again, we emphasize that this case study only
illustrates the network methodology; implementing the results as constraints
in a portfolio optimization approach can be conducted in future work.

Data

We used European 10-year sovereign bond data obtained from LSEG with daily
closing yield-to-maturity values during the year 2024. In total, we chose bonds
from the following countries: Austria (AUT), Belgium (BEL), Germany (DEU), Spain
(ESP), Finland (FIN), Ireland (IRL), Italy (ITA), the Netherlands (NLD), and Portugal
(PRT). Sovereign bonds associated with these developed EU countries have high
liquidity, thus facilitating the collection of reliable data to support our analysis.

Exhibit 7 presents summary statistics for the mean, volatility (standard
deviation), skewness (the degree of asymmetry in the distribution of yield-to-
maturity values), kurtosis (the level of tailedness in the distribution, relative to
a normal distribution), and maximum and minimum yield-to-maturity values

Exhibit 7. Summary Statistics of Daily Yield to Maturity (%)

Country Volatility Skewness Kurtosis

AUT 2.843 0.152 -0.095 -0.457 3.191 2.485
BEL 2.932 0.131 0.065 -0.493 3.269 2.652
DEU 2.341 0.144 0.078 -0.67 2.683 2.017
ESP 3.152 0.164 -0.341 -0.524 3.493 2.756
FIN 2.81 0.153 -0.002 -0.549 3.179 2.463
IRL 2.735 0.166 -0.115 -0.733 3.129 2.366
ITA 3.705 0.194 -0.427 -0.276 4.112 3.194
NLD 2.623 0.151 0.11 -0.481 2.994 2.278
PRT 2.952 0.188 -0.29 -0.719 3.324 2.51

2This process is denoted either as a minimum or maximum spanning tree approach, depending on the metric
used to compute edge weights.
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for each sovereign bond in 2024. The table shows that the average yield-to-
maturity values over the year remain similar across all fixed-income instruments.
The lowest average yield to maturity is for Germany, 2.341, which is reflective

of German bonds being considered a “safe-haven” instrument and a benchmark
bond for the eurozone. Conversely, the average yield to maturity is highest

for Italy, 3.705, which also has the highest volatility value, 0.194. The volatility
for bonds from Ireland and Spain is also relatively high.

Sovereign Bond Correlations

We provide a heatmap of the correlation between sovereign bonds, where
correlations are calculated with daily yield-to-maturity values over the

January to December 2024 period (Exhibit 8). Across all bonds, we find a high
correlation between sovereign bonds, reflecting the financial dependencies
between eurozone countries. The high correlation is reflected in the correlation
values of Austria and Finland and of Austria and the Netherlands, where
correlation values between sovereign bonds are equal to 0.99, suggesting
almost perfect positive correlation. There are entries in the correlation matrix
where correlation values between sovereign bonds are high but not almost
perfectly positively correlated, as observed between Germany and Italy, where
the correlation value between the daily yield-to-maturity values of sovereign
bonds is equal to 0.74. Note that while we identify high correlations among
different bonds, not all correlations will be included in the network analysis;
we include only a subset of correlations as part of the spanning tree.?®

Exhibit 8. Correlation Heatmap of Daily Bond Yields
- N N RN 7 K

AUT BEL DEU ESP FIN IRL ITA NLD PRT

2|f numerical algorithms for correlation network construction are used, then the potential error should be
considered if correlation values are high between securities where a unique network is not formed.
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Spanning Tree

Using a spanning tree approach, a minimum number of correlations

between assets with the highest magnitude is chosen, where each asset

has an associated correlation with another asset in the portfolio. The subset

of correlations can be described under a network, where nodes represent
assets and correlations represent edges connecting those nodes. We provide
further details on how the network topology of the correlation spanning tree
can be used to inform constraints on portfolio weights in the minimum-variance
optimization approach to improve portfolio robustness.

In the minimum-variance optimization approach, the portfolio variance is
calculated by the correlations in the yield to maturity, the volatility of these
yields, and the portfolio weights assigned to each bond. The portfolio variance
increases as correlation values and portfolio weights of assets associated with
these correlations increase. While applying the optimization approach, portfolio
weights are calculated by accounting for all correlation values between assets,
even if these correlations arise from noise in the data. To address this issue,
we focus on the subset of correlations identified under a spanning tree, where
we can decrease overfitting under the optimization approach by controlling
for portfolio weights based on the most “significant” correlations—specifically,
correlations between assets we believe could lead to an increase in portfolio
risk over time.

However, because all assets are represented in the spanning tree, we cannot
account for all correlations in the spanning tree by decreasing the portfolio
weights of all assets, because this would violate other constraints in the
portfolio optimization approach. We therefore need to prioritize the decrease
in portfolio risk for some of the correlations in the spanning tree. Hence, we
choose a subset of assets that are the most interconnected in the spanning
tree—specifically, nodes with the most edges. With edges representing
correlations between assets, the greater the number of edges associated with
this subset of assets, the greater the ability to lower the portfolio risk from
these correlations in the minimum-variance optimization.

To identify these assets with a high number of correlations in the spanning

tree, we rely on centrality metrics. Centrality measures how connected a node
is to other nodes. For the spanning tree, the more central an asset is, the more
correlations it has with other assets and thus the larger its influence on portfolio
variance. Hence, reducing the weight of such assets decreases the contribution
of spanning tree-selected correlations to portfolio risk.

While centrality can be defined in multiple ways, we use eigenvector centrality
(defined in the glossary). The eigenvector centrality represents how central a
node is to other nodes, accounting for the centrality of those nodes, where at
equilibrium, the eigenvector centrality of a node accounts for the centrality of

all other nodes in the network. The eigenvector centrality differs from other
measures (such as degree centrality) that account for only first-order connectivity.
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To illustrate this approach, consider a portfolio of four bonds. In the minimum-
variance optimization, where no spanning tree constraints are applied, assume
for this portfolio that the optimal weights are evenly distributed across all

four bonds (0.25, 0.25, 0.25, 0.25), with the first entry representing Bond 1,

the second entry representing Bond 2, and so forth. Now, suppose from the
spanning tree, constructed from correlations with high positive magnitude, we
find that Bonds 1 and 2 are the most central. To limit the portfolio variance from
correlations with Bonds 1 and 2, we impose an upper bound constraint of 0.2
on their combined weight. This means that, subject to all other constraints, no
more than 20% of the portfolio can be allocated in total to Bonds 1 and 2. The
maximum allocation of portfolio weight to Bonds 1 and 2 reduces the increase in
portfolio risk from correlations associated with Bonds 1 and 2. The choice of 0.2
(i.e., 20%) is illustrative; in practice, the bound would depend on the magnitude
of correlations and the network topology of the spanning tree.

Establishing an upper bound of 0.2 on Bonds 1 and 2 leads to a corresponding
lower bound constraint of 0.8 on the combined weights of Bonds 3 and 4,
ensuring that at least 80% of the portfolio is allocated to them. Because the
total portfolio weight must equal 1 under the minimum-variance optimization
approach, any upper bound on one set of bonds necessitates a lower bound
on the complementary set. This lower bound ensures a minimum allocation
to Bonds 3 and 4.

With these spanning tree-informed constraints, one feasible allocation could
be (0.1, 0.1, 0.4, 0.4). Other allocations, such as (0.2, 0.0, 0.8, 0.0), also satisfy
the constraints. Crucially, across all feasible solutions, the constraints reallocate
portfolio weights away from the most central, highly correlated bonds—here,
Bonds 1 and 2, whose total weight decreases relative to the unconstrained
(0.25, 0.25, 0.25, 0.25)—and toward less central, less correlated bonds (here,
Bonds 3 and 4, whose weights increase). If applied in practice, the number

of bonds subject to upper bound constraints should be calibrated through
backtesting to ensure portfolio robustness.

Exhibit 9 shows which assets to apply either an upper or lower bound constraint
on. We designate assets (light blue nodes) with an upper bound constraint as
being underweighted, as the associated portfolio weights for this set of assets
are lower with the spanning tree-informed constraint. For all other assets

(dark blue nodes), we designate assets with a lower bound constraint as being
overweighted, with higher portfolio weights under the portfolio optimization.
We use our centrality metric to determine these constraints. Specifically, we
include assets in the upper bound constraint if the total normalized eigenvector
centrality sum of assets exceeds 0.5, representing (light blue) nodes where at
least 50% of the network centrality is contained.?® All other nodes are therefore
subject to the lower bound constraint.

26This assumption can be adjusted to include nodes where 40% or 80% (for example) of the centrality
is represented.
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Exhibit 9. Correlation Spanning Tree of 10-Year Sovereign Bonds

B Overweight M Underweight

In Exhibit 9, we can identify small clusters of connected assets, where these
connections can be related to financial and economic similarities. For example,
we find Austria, Finland, and the Netherlands are interconnected in the
spanning tree; these countries have relatively low fiscal debts. We also find
that Spain and Italy are connected; both of these countries have relatively

high debt-to-GDP ratios.

Based on eigenvector centrality, as Finland, the Netherlands, and Portugal

are the most central in the network, and as part of a portfolio optimization
approach, an upper bound on the total portfolio weight would be applied

to these assets; a lower bound constraint would be applied on all remaining
assets. Applying an upper bound constraint to portfolio weights for Finland,

the Netherlands, and Portugal in the portfolio optimization problem would

have the largest impact on decreasing the total portfolio risk because the
assets accounting for 50% of the centrality are associated with 75% of the total
number of correlations in the spanning tree. However, the difference in the
correlation magnitude of these edges compared with periphery node edges is
small because correlations were chosen from a set of correlation values that are
high, on average. In this regard, the difference in the change in portfolio weights
based on correlations under the spanning tree would be small. Using network
approaches, we can establish additional constraints for the minimum-variance
portfolio optimization, addressing potential overfitting issues that may arise.
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Other Considerations

Here, we highlight several points relating to network analysis for portfolio
allocation that did not appear in our results. The first is short selling, where
network methods can inform negative correlations. Short selling can increase the
value of the portfolio. In the case of two assets that are negatively correlated, by
observing the historical data on yield to maturity, the asset for which there is a
decrease in yield to maturity over time can be longed (positive asset allocation
weighting) and the asset for which there is an increase in yield to maturity over
time can be shorted (negative asset allocation weighting). However, increasing
the range of weights can increase portfolio variance and risk, where losses can
be unbounded. Hence, extensions to short selling would require more detailed
analysis and backtesting to build effective long-term strategies.

In our case study, we use a one-year horizon of daily yield-to-maturity values for
sovereign bonds. However, correlations can vary significantly depending on the
length and frequency of the observation window (e.g., daily, weekly, or monthly).
Shorter windows may capture more timely dynamics but risk producing unstable
correlations, particularly during periods of market stress. In contrast, longer
windows provide stability but may smooth over temporal changes that are
important for portfolio risk management. Thus, the appropriate time window
should reflect both the type of assets in the portfolio and the investment
horizon, which ultimately are at the discretion of the portfolio manager.

Another consideration is the choice of method used to construct the network.
A spanning tree method was used in this example, where the minimal amount
of information was such that all nodes representing assets were connected
through correlations. However, the minimal information may not encompass
all the relevant information, where one could argue that key information on
correlations between assets was missing from the network. Hence, how
informed network constraints perform under portfolio optimization and out-of-
sample data will vary depending on the assets and the methodology used to
construct the correlation network, which should be tested.

We motivate the use of networks for asset allocation under a minimum-variance
optimization problem, where networks serve as a constraint on portfolio
weights. However, the use of minimum-variance optimization has limitations,
including the objective for asset allocation, which accounts for only the portfolio
risk and how such risk is defined (i.e., only the portfolio variance). In this

regard, other approaches that do not depend only on historical information

or objectives that account for other criteria for portfolio allocation (e.g., ESG
considerations) could also be included in the network approach.

Finally, we assume in this analysis that the portfolio is self-financing, with a
margin equal to 100% of the portfolio value with no portfolio leverage. However,
borrowing on margin can significantly increase portfolio leverage, in addition to
taking short positions. Such financing conditions will require further constraints
on the risk side in asset allocation, accounting for correlations across all assets
that can increase portfolio risk.
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CONCLUSION

This report reviewed a foundational shift in how capital markets can be
understood and analyzed using the lens of complex systems. Traditional
financial paradigms—rooted in neoclassical economics, equilibrium-based
models, and assumptions of fully rational agents—often prove inadequate in
capturing the dynamic, nonlinear, and interconnected nature of contemporary
financial systems. In contrast, complexity science offers a robust and
interdisciplinary framework capable of addressing these limitations by
foregrounding emergent phenomena, adaptive behavior, feedback dynamics,
and systemic interdependencies.

Integrating such tools as agent-based modeling and network analysis into
portfolio management and risk management provides both theoretical depth
and practical utility. These methodologies enable practitioners to simulate
heterogeneous agent behavior, model contagion pathways, identify structural
vulnerabilities, and assess resilience in the face of exogenous and endogenous
shocks. Such approaches are increasingly relevant for understanding and
managing systemic risk, forecasting regime shifts, and designing investment
strategies responsive to evolving market environments.

The complex systems perspective presented in this report aligns with existing
and emerging investment frameworks, including multifactor strategies, TPA,
and systems-level investing—the latter emphasizing the interconnectedness
between financial returns and the broader socioeconomic and environmental
systems within which markets operate. However, adopting a complex systems
approach is not just a methodological enhancement but also constitutes a
paradigmatic shift with significant implications for portfolio construction, risk
management, regulatory oversight, and long-term capital stewardship. The
full range of implications extends well beyond the scope of this report.? Yet,
we hope it is clear that acknowledging capital markets as complex systems
demands shifts in how we think about investments, investors, and risk. As
such, if we fully adopt a systems perspective, new models will be needed that
challenge inherited assumptions and embrace the complexities of our current
and future world.

The introduction of complex systems into investment management represents
a timely evolution. By transitioning to a new analytical framework, investment
professionals and policymakers can be further equipped to navigate uncertainty,
anticipate structural transformations, and contribute to collectively developing
more resilient and adaptive financial systems.

27For a more detailed account, see Bookstaber (2007) and Farmer (2024).
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APPENDIX A. A BRIEF HISTORY OF
COMPLEX SYSTEMS IN FINANCE

While complex systems analysis is not new, its evolution has taken many paths,
intersecting with economics and finance at multiple points. Understanding this
history can illuminate how we arrived at current practices and where we might
be headed.

Early Insights from Mathematics and Physics
(1950s-1960s)

What would become complex systems theory was in its infancy with such
researchers as applied mathematician Norbert Wiener (1948), who focused on
early cybernetics, and biologist Ludwig von Bertalanffy (1968), who introduced
general systems theory (GST).2 Along with other contributors, systems
approaches spread across such disciplines as engineering, physics, biology,
and psychology (see van der Leeuw 2019).

At the same time, approaches used to study particle motion and geometric
features of nature were applied to financial markets, with Maurice F. Osborne
(1959) applying Brownian motion?’ to stock prices and Benofit Mandelbrot
(1963) applying fractal geometry to price movement self-similarity across time
scales. While Osborne's work reinforced the random walk hypothesis and the
development of the Black-Scholes option pricing model, which dominated
financial theory for decades, Mandelbrot's analysis suggested that markets are
nonrandom and non-Gaussian and retain memory effects, an early indicator
that finance could be understood through complexity science.

Complexity Science Meets Financial Markets
(1970s-1980s)

Complex systems theory continued to develop in such fields as physics and
ecology, where researchers studied how interactions among components within
a system could lead to emergent, unpredictable behaviors. These developments
were slowly introduced to economics and finance. Key early work came from
such researchers as mathematician E. C. Zeeman (1974), who introduced
catastrophe theory to model sudden market transitions, arguing that investor
sentiment shifts could drive abrupt crashes.®®

8 GST refers to a general science of fundamental principles governing the origin, function, and maintenance of
natural and social systems (Issitt 2024). GST emphasizes the study of systems as a whole and identifying how
the underlying behaviors of interconnected elements generate isomorphisms and emergent properties across
different levels of the system (Hofkirchner and Schafranek 2011).

2?Such application of Brownian motion can be traced further back to the seminal work of Louis Bachelier (1900).

30Catastrophe theory is a mathematical framework used to describe discontinuous transitions between the states
of a system, given smooth variation of the underlying parameters (Roopnarine 2008).
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In 1984, the Santa Fe Institute (SFI) opened as a hub for complexity research.
Economists, physicists, and biologists, such as Murray Gell-Mann, John Holland,
and W. Brian Arthur, collaborated at SFl to model financial markets as complex
adaptive systems. Scheinkman and LeBaron (1989) applied nonlinear dynamical
methods to financial time-series data, identifying nonrandom, nonlinear
dependencies in stock returns.

By the end of the 1980s, the overlap of complexity and finance had gained
momentum on two fronts. First, SFl and other institutions fostered conferences
and books, such as The Economy as an Evolving Complex System (Anderson,
Arrow, and Pines 1988), where economists and physicists exchanged ideas.
Second, a growing body of empirical work hinted that markets might exhibit
complex system dynamics, including nonlinear feedback patterns. The stage
was set for rising interest in the 1990s as computing power and interdisciplinary
collaboration grew.

Finance Begins Embracing Complex Systems
Frameworks (1990s-2000s)

The 1990s witnessed a convergence of complexity and finance in multiple
areas. Economists began to build computational models of markets as evolving
ecologies of agents, an example of which is SFI's “artificial stock market”
(Ehrentreich 2008). Using agent-based modeling, researchers simulated a
market in which heterogeneous, adaptive agents traded with each other. They
found that as the model ran, agents produced unpredictable outcomes not
captured by traditional equilibrium models but reminiscent of the emergent
behavior of financial markets, such as periodic bubbles and crashes, herd-driven
volatility clusters, and regimes of high and low volatility. These features arose
endogenously and illustrated that markets naturally self-organize into complex,
nonequilibrium states.

At the same time, physicists brought a data-driven, “law-finding” approach,
treating markets like physical systems to be empirically studied. The growing
influence of physics into economics took shape as “econophysics”—a term
coined in the mid-1990s to describe the trend. Physicists such as Rosario
Mantegna and H. Eugene Stanley (1999) applied methods from statistical
mechanics to asset prices and other financial data. Although mainstream
economists had previously adopted some computations from physics

(e.g., Brownian motion, mentioned previously), a common belief among
econophysicists was that standard economic theory was unable to explain the
non-Gaussian (i.e., heavy-tailed) distributions of empirical market data (Rosser
2021, pp. 69-70). Econophysicists confirmed and extended Mandelbrot's earlier
observations, identifying heavy tails and other scaling phenomena across
individual stocks, stock indexes, and company size growth rates (Stanley,
Amaral, Canning, Gopikrishnan, Lee, and Liu 1999). Researchers also discovered
long-range correlations in volatility and clustering of market activity, suggesting
self-organizing behavior. While these ideas did not immediately hit mainstream
economics, they planted seeds for future quantitative finance techniques.
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Appendix A. A Brief History of Complex Systems in Finance

In the 2000s, complex systems approaches to finance gained practical
relevance. Researchers began applying concepts of self-organized criticality,
examining whether markets operate near critical points (Johansen, Ledoit,
and Sornette 2000). Around the middle of the decade, some economists and
policymakers acknowledged the growing complexity of financial systems,
driven by exotic derivatives, global banking networks, and algorithmic trading.
A few stakeholders warned that this complexity posed systemic risks (see
Bookstaber 2007; Buffett 2003; Haldane 2009; May, Levin, and Sugihara
2008). The 2008 GFC solidified attention to complex systemic risk. The crisis
unfolded as a network cascade in which feedback loops and interbank failures
amplified shocks—dynamics traditional risk models failed to capture. Instead,
such concepts as network contagion, heavy-tail risk, and adaptive behavior
were introduced. By the end of the decade, financial markets were increasingly
recognized as a deeply interconnected complex system, necessitating new
analytical tools to understand and mitigate systemic risk.

Contemporary Developments and Advanced
Applications (2010s to Present)

Following the GFC, additional economists and regulators adopted complexity
science concepts, such as “tipping points,” “networks,” “feedback,” and
“resilience,” though complexity science's quantitative and modeling tools
remained underutilized (Battiston et al. 2016). Stakeholders such as Andrew
Haldane, chief economist at the Bank of England (from 2014 to 2021), and John
Rutledge, chief investment strategist at Safanad (a global principal investment
firm), called for real-time “financial weather maps” (weather patterns are classic
examples of complex systems) to dynamically track systemic risks (Nordrum
2016; Rutledge 2020). In recent years, complex systems theory in finance has
been further bolstered by advances in computing and data. The rise of big data
and machine learning enabled the calibration of more sophisticated models that
capture nonlinear relationships and emergent patterns.?'

The COVID-19 pandemic in 2020 further highlighted the need for complex
systems approaches. Researchers have been working on models that integrate
epidemiological dynamics with economic networks to understand how such
events as a virus outbreak can trigger a financial crisis via behavioral responses
and policy reactions.

There is also growing interest in multilayer network models, where different

network layers might represent financial, supply chain, and information links

simultaneously (Pacelli 2025). These models can help capture how a shock in
one domain (e.g., a disruption in trade networks) can compound with shocks
in another (financial networks).

31For example, reinforcement learning algorithms (a type of machine learning) are now used in adaptive trading
strategies, effectively allowing trading agents to learn and evolve in response to market feedback. Such algorithms
echo the idea of markets as complex adaptive systems: They do not assume a static optimal strategy but, rather,
continually adapt to new data.
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APPENDIX B. COMMON MODELING
TECHNIQUES FOR COMPLEX SYSTEMS

Systems scientists use multiple techniques to analyze complex systems. This
report focuses on ABMs and network theory models. Other notable models
include nonlinear dynamical systems modeling and system dynamics or causal
loop diagrams. Importantly, no model will provide a complete picture of a
complex system, and different techniques will be better at capturing certain
system features over others. For example, ABMs capture heterogeneous
agents and interaction dynamics, whereas network theory focuses on network
structure. Likewise, other models are useful in cases of highly nonlinear
phenomena (i.e., sensitive to initial conditions) or to qualitatively identify
feedback loops within a system. The technique selected will depend on the
functional purpose of the study and what aspect of market phenomena one
wishes to capture. While these models are not exhaustive of the full range of
tools used by systems scientists, they demonstrate additional methodologies
used in investigating different features of complex systems.

A dynamical systems model is one that evolves over time according to rules
expressed as mathematical equations (primarily differential equations; see
Ackley, Lessler, and Glymour 2022). Model formalizations are represented as
vectors across a phase space, S, capturing all possible states of the system
across time, t, which may be continuous or discrete (Boccara 2010). The
evolution law(s) determines the state of the system at a point in time based
on previous states of the system.

For example, a formal dynamical systems model would consist of the following:

e A set of state variables describing the system at time t (e.g., price, volatility,
interest rate)

e An evolution law that tells you how those state variables change from t to
t + 1, generally written as a differential function

e Additional parameters and external inputs

A nonlinear dynamical system is one in which the evolution rules are nonlinear
such that they produce disproportionately large or complex responses to small
changes in initial conditions or parameters. Nonlinearity is a key ingredient for
modeling such phenomena as chaos (sensitive dependence on initial conditions)
and complex oscillatory behavior. Analysts might study trajectories through

the phase space to identify attractors (states or cycles the system gravitates
toward) or repellers. In finance, dynamical systems theory can be used to model
business cycles, asset price dynamics, or other time series where feedback
loops exist.
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Appendix B. Common Modeling Techniques for Complex Systems

Likewise, based on the concepts of cybernetics, Jay Forrester of MIT developed
system dynamics techniques to model the interactions within systems

(Hester and Adams 2014, p. 53). Unlike dynamical systems modeling, which is
centered on formalized mathematical models, system dynamics is an approach
used to represent high levels of aggregation, focusing on interrelationships

and feedback loops between stocks (entities that accumulate or deplete) and
flows (rates of change) within a system. Causal loop diagrams are the main
analytical tool used to capture system dynamics, usually represented through
arrows between system components. Relationships depicted in causal loop
diagrams may be defined by mathematical equations derived from systematized
data, though they are often derived from qualitative sources. (See Exhibit B1

for a comparison of four common modeling techniques used in complex
systems analysis.)

Exhibit B1. Complex Systems Modeling Techniques

Agent-based models

Network theory and
graph models

Nonlinear dynamical
systems modeling

System dynamics and
causal loop diagrams

Simulations of
autonomous agent
interactions that affect
the system as a whole

Representations of
interconnected or
dependent entities
along with relative
strength of connections

Vectors across a
possibility space

that mathematically
represent states of the
system as it evolves

Diagrams of causal flow
within a system

What Aspects

of Complex Systems
Are Emphasized?

Heterogeneous adaptive
agents, emergence,
self-organization

Interconnected networks

Emergence, nonlinearity,
and regime shifts

Feedback loops and
interconnected networks

Challenges

Computational
requirements; sensitive to
assumptions; difficulties
calibrating and evaluating

Real connections in data
are dynamic; parameters
must be inferred from
data; can be challenging to
translate into actions

Model specifications may
not be obvious from the
data; does not provide
neat analytical solutions;
can be hard to interpret

Uses aggregated metrics;
parameters difficult

to estimate; risk of
oversimplification

CFA Institute | 43




44

GLOSSARY

Adaptive agents: Market participants who respond to each other's behavior
and environmental conditions as they evolve.

Agent-based models (ABMs): Computational models that simulate the
interactions of autonomous "agents” to assess their effects on the system.

Bounded rationality: Individuals aim for satisfactory solutions rather than
optimal ones, given cognitive and information limitations (Simon 1955).

Closeness centrality: The measure of centrality of a node defined in terms
of the average distance of the node to all others (Rodrigues 2018).

Conditional value at risk (CoVaR): Captures the VaR of the financial system
“conditional on institutions being under distress” (Adrian and Brunnermeier
2008, p. 1).

Contagion: When the instability of an institution (e.g., an instrument, market,
sector, or infrastructure) spreads to other parts of the financial system,
producing negative effects throughout the system and instigating a systemwide
crisis (Smaga 2014, p. 11).

Econobiology: Also called “evolutionary economics”; an application of complex
systems to financial markets that uses lessons on complexity from evolutionary
biology to understand economic and market behavior (Rickles 2011).

Econophysics: An application of complex systems to financial markets inspired
by complexity frameworks and statistical modeling in physics and applied
to economic and market behavior (Rickles 2011).

Eigenvector centrality: A measure of a node's centrality given the centrality
of its neighbors (Konstantinov and Fabozzi 2025).

Emergence: Higher-order features or patterns arise from lower-level
interactions.

Expected shortfall (ES): The tail conditional expectation by integrating all losses
with low probabilities across the distribution tail (Hoffmann 2017).

Graph models: Network representations that consist of nodes (vertices)
and links (edges) connecting nodes; used in network analysis.

Marginal expected shortfall (MES): A financial institution's “losses in the tail
of the aggregate sector’s loss distribution” (Acharya et al. 2017, p. 3).
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Glossary

Networks: Webs of relationships through which entities or agents are linked;
a network view looks at how connections between entities/agents transmit
and in some cases amplify shocks.

Network theory: An area of mathematics used to analyze relationships and
interactions of interconnected entities (Konstantinov and Fabozzi 2025).

Nonlinearity: A property of a system in which the output is not proportional
to the input; small changes can have outsized effects.

Resilience: The capacity to absorb shocks and reorganize; how a system'’s
interconnected relationships and structural vulnerabilities might
mitigate shocks.

Self-organization: Structure or order can emerge from the bottom up;
lower-level activity creates patterns at higher levels.

Stylized facts: A set of properties common across many instruments, markets,
and time periods and observed by independent empirical studies, which any
theory of markets should explain (Cont 2001).

Systematic risk: Broad market risk that cannot be diversified away.

Systemic risk: "A risk of disruption to financial services that is caused by an
impairment of all or parts of the financial system and has the potential to have

serious negative consequences for the real economy” (Caruana 2010).

Value at risk (VaR): “A measure of the size of the tail of the distribution of profits
on a portfolio or for an organization” (Chance and Edleson 2024, p. 31).
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