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EXECUTIVE SUMMARY
Industries worldwide are evolving rapidly amid new technologies and policy 
shifts, while markets are more interconnected than ever. Information travels 
almost instantaneously across global networks, meaning a shock in one market 
can ripple quickly through others. The investment industry must continually 
adapt to changing economic and market environments, yet traditional financial 
models—built on assumptions of equilibrium and rational actors—often struggle 
to capture the unpredictable, networked, and nonlinear behaviors observed in 
financial markets.

This report reconsiders how we understand financial markets, framing them 
as complex systems and offering alternative approaches to traditional financial 
models. By applying methods from complex systems sciences, it equips 
financial professionals with new tools for systemic risk analysis, portfolio 
management, and system-level investing. Techniques such as agent-based 
modeling and network theory can be used to understand and capture complex 
market phenomena such as emergent behavior, nonlinearity, feedback loops, 
and structural resilience.

For portfolio managers and risk analysts, adopting a systems perspective 
means moving beyond normal distributions and equilibrium-based models to 
capture investment complexity and better inform scenario planning, portfolio 
optimization, and risk management. For regulators, it means leveraging new 
models to strengthen systemic risk oversight and macroprudential policies.

The report comprises two primary sections. The first section introduces core 
ideas from complex systems sciences that challenge the assumptions of 
traditional financial analysis and evolve our understanding of systemic risk. 
The second section demonstrates how complex systems methods—specifically, 
ABM and network theory—can be applied to systemic risk oversight and 
investment decision making.

Ultimately, this report provides a clear and approachable foundation for those 
new to complex systems, agent-based models, and network theory. By taking 
seriously the view that financial markets are complex systems, investment 
professionals and regulators can access new tool kits for anticipating financial 
stability risks, improving portfolio resilience, and analyzing system-level 
behavior in capital markets and the broader economy. Yet, beyond new tools, 
it seeks to spark a shift in thinking—challenging conventional paradigms of 
market behavior and fostering the mindset needed to thrive in a world defined 
by complexity, uncertainty, and accelerating change.
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Key Takeaways

●	 Financial markets are complex adaptive systems. Financial markets and 
economies are not static but dynamic, evolving, and highly interconnected. 
Dense webs of interconnection mean that changes in one area of a system 
can have nonlinear, dramatic effects in other areas of the system or change 
the behavior of the system as a whole.

●	 Complex systems represent a new paradigm for financial modeling. 
Traditional equilibrium and normal-distribution models struggle to 
explain the “stylized facts” or statistical features of global markets. Such 
characteristics as heavy-tailed distributions, nonlinearity, and volatility 
clustering indicate the need for a complex systems lens, which is better 
suited to analyze how systems with many different agents (e.g., market 
participants) interact, adapt, and influence each other over time, generating 
the statistical characteristics observed in real markets. This systems lens can 
be used to explain and anticipate real-world phenomena, such as bubbles, 
crashes, and sudden shifts in investor sentiment.

●	 Portfolio management can benefit from a dynamic, systems-based 
approach. Financial markets often depart from the assumptions of classical 
finance models, such as the widely-used capital asset pricing model (CAPM), 
which assumes rational agents and equilibrium. Insights from behavioral 
economics and complexity economics suggest that market behavior is 
more accurately captured by incorporating the subrational decision making 
of market participants (e.g., herding behavior), networked and feedback 
effects, and regime shifts into models. Complex systems offer a systematic 
way of understanding how these behaviors drive price changes and 
volatilities across markets.

●	 Systemic risk analysis demands a complex systems lens. Nonlinearity, 
feedback loops, and dense interconnections within financial systems 
mean that small disturbances can cascade into systemic events or be 
dampened unexpectedly. Rather than examine assets in isolation, systems-
focused risk analysts trace how shocks permeate across overlapping webs 
of relationships.

●	 Agent-based modeling and network theory are practical tools for building 
resilience into portfolios and markets. Methods that simulate heterogeneous 
investor behavior and map contagion paths enable scenario tests that reveal 
hidden vulnerabilities and emerging market regimes. For these reasons, 
some central banks have started to use network theory and agent-based 
models to enhance stress tests, while others use scenario analyses to tackle 
emerging climate-related financial risk.
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INTRODUCTION
We live in a vastly interconnected world where information, capital, goods, and 
services can transit rapidly through networks of people, institutions, markets, 
and economies. These interdependencies affect economic activity at all scales—
from local market behavior to global macroeconomic events. To effectively 
assess risk and forecast systemwide impacts, analytical models must be able 
to account for these multiscale and complex webs of interactions.

Although the theoretical foundations of complexity economics (see Arthur 
2015) and system-focused approaches to the economy can be traced back to 
the 1950s and 1960s (see Appendix A), it is only within the past few decades 
that globalization, interconnection, and the mass availability of big data have 
prompted what some scholars refer to as a “complexity turn” (see Castellani 
2014; Urry 2005). Indeed, the embrace of complex systems has become 
implicit in the modern economy. For example, the development of artificial 
neural networks (ANNs) that underpin the deep learning architectures of large 
language models (LLMs) stems from progress in the complexity sciences. 
In the future, complex systems approaches will continue to grow as they are 
increasingly deployed in modeling, monitoring, and responding to pressing 
global challenges, including emerging pandemics, rising global inequality, and 
climate change (Hébert-Dufresne, Allard, Garland, Hobson, and Zaman 2024).

Complex systems sciences can be described generally as a multidisciplinary 
framework for understanding highly dynamic, interconnected, and evolving 
systems. Whether studying an ant colony, a human brain, or an economy, 
complex systems approaches assume system components interact to produce 
macro-level outcomes that are more than the sum of individual actions. This 
perspective shifts the focus from isolated parts of the system to the collective 
behavior arising from system dynamics.

For financial markets, two general approaches for applying complex systems 
have emerged. Econobiology, or “evolutionary economics,” uses lessons from 
evolutionary biology to understand complex economic and market behavior. 
Econophysics is inspired by complexity frameworks and statistical modeling 
in physics and applied to economic and market behavior (Rickles 2011).

Both approaches, however, overlap to a significant extent in their theoretical 
assumptions and analytic methodologies. For example, both hold that market-
level phenomena (e.g., volatility, crashes, contagion, innovation) result from 
myriad interactions among heterogeneous agents (e.g., investors, firms, 
governments, regulators), often yielding unexpected (i.e., heavy-tailed) or 
nonlinear outcomes. Additionally, both approaches consider the characteristics 
of financial markets to be well suited for systems-based analyses. As such, this 
report introduces key features of complex systems commonly described within 
both approaches (see Exhibit 1) and identifies modeling techniques used across 
the complexity sciences.
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Exhibit 1. Key Features of Complex Systems

●	 Emergence: Higher-order features or patterns arise from lower-level 
interactions. For example, market volatility or liquidity crises emerge from 
the interactions of many traders and institutions and cannot be traced to 
a single actor. Asset bubbles and crashes are emergent phenomena of the 
entire market system.

●	 Heterogeneous adaptive agents: Market participants differ in their goals 
and strategies, but they are mutually interdependent and adapt to each 
other’s behavior and environmental conditions. Investors, fund managers, 
and regulators react to each other’s activities, often in feedback loops.

●	 Nonlinearity and feedback loops: Financial systems do not operate linearly. 
Small events can trigger outsized effects due to feedback patterns. For 
instance, a minor sell-off can snowball into a crash if it triggers margin calls1 
and panic selling.2 Feedback loops (reinforcing or dampening) are common, 
as seen when banks restricting credit to preserve balance sheet liquidity 
further depresses the economy, causing more losses in a vicious cycle.

●	 Interconnected networks: Financial entities are linked through webs of 
relationships (counterparty links, asset correlations, cross-shareholdings, 
etc.). A network view looks at how connections between agents transmit 
and in some cases amplify risk. For example, the network of exposures 
between banks can propagate losses during market stress, and index 
inclusion can generate excess price co-movement between underlying 
stocks (Claessens and Yafeh 2011).3 Likewise, exchange-traded fund (ETF) 
ownership and arbitrage can generate co-movement in equity returns 
beyond fundamentals (Da and Shive 2018; Israeli, Lee, and Sridharan 2017).

●	 Self-organization: Structure or order can emerge from the bottom up. 
We see this in markets through such phenomena as industry clusters, the 
emergence of new financial ecosystems (e.g., decentralized finance), or 
the spontaneous formation of trading conventions. System organization 
often grows organically—for instance, decentralized finance platforms have 
evolved as a self-organizing network of users and protocols (Alonso 2024).

1 When buying stock on margin (i.e., brokerage firm lends cash to the investor), investors must have a margin 
account, using assets in the account as collateral at a designated margin level (FINRA 2023). Margin calls occur 
when a brokerage house demands money to bring the equity in an investor’s account back up to the margin level 
(Clarke, de Silva, and Thorley 2013).
2 Panic selling refers to a sharp sell-off of a stock or investment based on fear or overreaction to potential 
decreases in price.
3 The so-called index effect—where a stock price increases following inclusion in an index—may be diminishing 
and is likely to be context specific (Greenwood and Sammon 2025; Chen, Singal, and Whitelaw 2016).
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●	 Resilience (and fragility): Complex systems may exhibit resilience (the 
capacity to absorb shocks and reorganize), but they can also harbor hidden 
fragility. Resilience analysis goes beyond simple diversification: It examines 
structural vulnerabilities and how a system’s interconnected relationships 
and constraints might amplify or mitigate shocks. For example, two banks 
might both appear well capitalized (individually robust), but if they are highly 
interdependent via common exposures, the system may still be fragile 
(see Pang and Shrimali 2024).

In the investment industry, some firms are starting to embrace complexity. 
Institutional investors with long investment horizons are working to foster 
system-level investing, which recognizes the interconnectivity and mutual 
dependence between investments and healthy financial, environmental, and 
social systems (Burkart, Ziegler, and Aiken 2024; Burckart and Lydenberg 2021). 
Building a systems-level portfolio acknowledges that marketwide return drivers 
explain a large share of long-term portfolio outcomes. Those drivers, in turn, 
rely on collective efforts to self-organize in ways that mitigate risk and boost 
the resilience of interdependent financial, environmental, and social systems 
(Lukomnik and Burckart 2024).

Stakeholders in wealth management have also advocated for systemic 
investment frameworks. Within wealth management, the focus is on identifying 
leverage points within the system, where targeted investments can create 
outsized effects, and synergistic investments that create value through 
fostering enabling conditions (i.e., conditions that promote certain behaviors 
over others) and coordinated amplification of returns across asset classes 
(Tews, Jay, Andersen, and Paetzold 2025).

With respect to regulators, the Federal Reserve Bank of New York (2007, p. 5) 
acknowledged that “the notion of systemic risk in the financial system bears 
a strong resemblance to the dynamics of many complex adaptive systems in the 
physical world.” Market instability is increasingly seen as a product of networked 
interactions; in practice, this has meant augmenting stress tests and oversight 
frameworks with models of network contagion, feedback loops, tipping points, 
and resilience (Battiston, Farmer, Flache, Garlaschelli, Haldane, Heesterbeek, 
Hommes, Jaeger, May, and Scheffer 2016). The Financial Policy Committee at 
the Bank of England also acknowledged the need to understand contagion and 
amplified effects in densely connected financial networks (see Bank of England 
2024). In order to meet these goals, the Bank of England identified current and 
future applications of agent-based modeling in central bank research and policy 
(Borsos, Carro, Glielmo, Hinterschweiger, Kaszowska-Mojsa, and Uluc 2025).
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Looking ahead, we expect complex systems approaches to play an increasing 
role in tackling new challenges, such as climate-related financial risk, fintech and 
decentralized finance ecosystems, and cybersecurity risks. These domains all 
involve networks of interactions, adaptive agents, and potential tipping points 
and regime changes, making them well suited for complexity-informed analysis.

Even so, analyses based in complex systems have yet to see widespread 
adoption across the investment industry. Academics in economics and finance 
have advocated incorporating complex systems–based approaches into 
standard financial analysis and investment practices. For example, J. Doyne 
Farmer (director of complexity economics at Oxford) and W. Brian Arthur (at 
the Santa Fe Institute) emphasize that traditional financial models often miss 
critical dynamics, such as nonlinearity and emergent phenomena (see Farmer 
2024; Arthur 2015). They argue for analytical tools, such as network analysis and 
agent-based modeling—adopted from physics, biology, and other disciplines—to 
be applied to investment and financial regulation (Battiston et al. 2016).

With this goal in mind, this report introduces key concepts in complex systems 
analysis. The first half of the report focuses on how a systems analysis can 
transform our understanding of financial markets and systemic risk. The second 
half introduces modeling techniques commonly used to analyze complex 
systems that are well suited for investment and risk management assessments. 
Importantly, adopting a complex systems view moves us forward by challenging 
core assumptions in traditional financial analysis and offering alternative tool 
kits that can be applied to understand, forecast, and strengthen capital markets.
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FINANCIAL MARKETS AS COMPLEX 
SYSTEMS

4 See Veblen (1898), Robinson (1969), Stiglitz (1987), Dixit and Stiglitz (1977), Hayek (1945), and von Hayek 
(1937). Additionally, Kenneth Arrow, known for his contributions that facilitated the dominance of general 
equilibrium theory in economics, later participated in discussions of complexity economics and acknowledged 
the discrepancies between equilibrium as an ideal and the realities of market behavior (Arthur 2019).
5 More precisely, stylized facts refer to “stable patterns that emerge from multiple empirical data sources after 
abstracting from the minutia of the evidence” (Oldham 2019, p. 2) that “any putative theory of markets ought 
to explain” (Buchanan 2012).
6 Simon (1962) also directly contributed to the study of complex systems in his article “The Architecture 
of Complexity.”

Neoclassical economics has been the standard of practice for over a century 
(Neck 2022). It assumes agents are rational and that their aggregated behavior 
drives markets toward equilibrium. In this view, markets function efficiently to 
balance supply and demand, where deviations (e.g., mispricings and bubbles) 
are anomalies. However, many notable economists—Thorstein Veblen, Joseph 
Stiglitz, Joan Robinson, and Friedrich Hayek, among others—have pointed out 
that these assumptions often fail to match the observed behaviors of individuals 
and markets.4 Investors do not always act rationally in the real world; they 
exhibit biases, possess incomplete information, and are influenced by each 
other. Likewise, markets often exhibit persistent deviations from equilibrium 
(trends, cycles, crises) that are not mean-reverting.

These nontrivial statistical features of market behavior observed across financial 
instruments, assets, and time periods are often referred to as stylized facts.5 
Cont (2001) conducted a noteworthy metareview of empirical studies of asset 
returns, identifying eleven distinct stylized facts across decades of research. 
A subsequent study by Ratliff-Crain, Van Oort, Koehler, and Tivnan (2025) found 
8 of the 11 stylized facts persist in modern US stock markets despite significant 
regulatory shifts and technological progress (see Exhibit 2).

The identification of stylized facts indicates the need for alternative narratives 
of market behavior that explain why these empirical regularities emerge in 
financial data.

Part of the answer lies in the tendencies of human behavior to exhibit patterns 
that fail to conform to assumptions of rational equilibrium models. Herbert A. 
Simon (1955) proposed that individuals aim for satisfactory solutions rather 
than optimal ones, given cognitive and information limitations—a term that 
became known as bounded rationality.6 In finance, this means investors might 
follow norms or rules of thumb (see Simonian 2025), and their decisions can 
be inconsistent or biased, as demonstrated by Kahneman and Tversky’s (1979) 
work on prospect theory, which describes how individuals weigh potential 
losses and gains differently under varied conditions. If agents are not strictly 
rational, how should we expect markets to behave?
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One way to answer this question is by analogy to ecosystems (see Thinking 
Ahead Institute 2017). In ecology, an ecosystem consists of diverse entities 
(e.g., species) interacting within an environment, leading to changes in species 
population, competition, and adaptation. Crucially, an ecosystem does not 
always settle into static equilibrium—it can cycle or suddenly shift if conditions 
change (think of predator–prey cycles or invasive species overgrowth, which can 
force native plants and animals to alter their behaviors). In an analogous way, 
financial markets can be thought of as an ecosystem of agents and strategies 
(see Farmer 2024). Investors, traders, institutions, and regulators continuously 
adjust their behavior in response to the collective outcomes of past actions 
(Lo and Zhang 2024). In this sense, markets, like ecosystems, are constantly 
evolving.

Investors exploit market inefficiencies as they emerge by adopting new 
strategies, whether switching from momentum to value, for example, or by 
tactical asset allocations. But these adjustments of individual portfolios produce 
subsequent higher-level activity at the market level (e.g., market volatility) that 
can create mispricing opportunities to exploit, generate new risks, or stimulate 
demand for other investment strategies. This back-and-forth influence between 

Exhibit 2. Stylized Facts in US Stock Markets

Stylized Fact Description

Absent linear autocorrelation A linear relationship is not found between a present return and past 
returns (except for very short, intraday horizons).

Heavy tails Return distributions exhibit more extreme outcomes than predicted by 
a normal distribution, often displaying power-law or Pareto-like tails.

Aggregational Gaussianity Return distributions differ at different timescales such that distributions 
are nonnormal at short time intervals and more Gaussian (normal) as 
returns are aggregated over longer time horizons.

Intermittency At any timescale, returns display a high degree of variability. “This is 
quantified by the presence of irregular bursts in time series of a wide 
variety of volatility estimators” (Cont 2001, p. 224).

Volatility clustering Large changes in asset prices (up or down) tend to be followed by more 
large changes, and small changes are followed by more small changes, 
creating periods of high or low volatility.

Conditional heavy tails “Even after correcting returns for volatility clustering (e.g., via 
GARCH-type models), the residual time series still exhibit heavy tails” 
(Cont 2001, p. 224).

Slow decay of autocorrelation 
in absolute returns

Although asset returns may exhibit little autocorrelation, the magnitude 
of returns (absolute or squared) shows a slowly decaying positive 
autocorrelation, roughly following a power law, signaling long-range 
dependence and persistent volatility clustering.

Volume/volatility correlation Trading volume is correlated with measures of volatility.

Source: Ratliff-Crain et al. (2025).
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activities of market participants and emergent market behavior can lead to the 
deviations from normal distributions observed in stylized facts that cannot be 
adequately captured in traditional financial models. New techniques are needed 
to account for changes in market prices and to create accurate forecasts (Farmer 
and Geanakoplos 2009; Barbrook-Johnson, Mercure, Sharp, Peñasco, Hepburn, 
Anadon, Farmer, and Lenton 2024). A state of equilibrium, therefore, cannot 
be assumed when adopting a complex systems view of markets. It may occur 
under certain conditions, but it is one possible state among many.7

Market Insights for Investors and Investment 
Professionals

If we view capital markets as complex ecology-like systems, we gain unique 
insights into investment strategies that would otherwise be missed. Specifically, 
viewing capital markets as complex systems offers new insight into investor 
behavior and market anomalies. By reframing market and investor behaviors 
through a complex systems lens, investment professionals can more easily 
identify and describe events in the market that fail to adhere to assumptions of 
equilibrium or efficient price movements. Next, we discuss key issues investors are 
likely to encounter when analyzing markets through a lens of complex systems.

Herding Behavior

If we treat investors as agents who observe and adapt to market conditions and 
the behaviors of other investors, it is unsurprising that herding occurs in the 
market. Herding is defined as a group of investors trading in the same direction 
over a period of time (Nofsinger and Sias 1999). More specifically, it describes 
large groups of agents (i.e., investors) acting in unison without central control. 
Investor herding behavior can occur for a variety of reasons (see Hirshleifer and 
Hong Teoh 2003). Some investors may deliberately follow other investors in 
purchasing securities by, for example, tracking momentum.8 Other investors 
may inadvertently herd following the release of new information or react to 
the same changes in fundamental factors (Spyrou 2013). Regardless of the 
dominant strategy, if enough investors start buying into a rising market, their 
collective action can increase security prices and further validate the trend. 
This positive feedback loop can lead to self-reinforcing price movements and 
eventual bubbles.

7 Complexity researchers have used agent-based models to identify which analytical regime, traditional equilibrium 
or complexity, is best suited under varying market conditions. They found that in an environment where investors 
adapt slowly to new observations of market behavior, the market converges to a rational expectations regime 
where traditional equilibrium models prevail; however, as traders rapidly adapt to new market observations—as is 
often observed in real investment scenarios—greater trading heterogeneity emerges and the market self-organizes 
into a complex regime (LeBaron, Arthur, and Palmer 1999). Since this landmark research, findings have upheld 
the general conclusions of a regime shift from a homogeneous rational expectation equilibrium to a complex 
heterogeneous regime, though updated models indicate this shift occurs at faster learning rates than initially 
proposed (Ehrentreich 2004).
8 Momentum strategies focus on buying or selling based on past returns of the stock, focusing on buying recent 
winners and selling recent losers. This form of herd behavior would not be rational under the efficient market 
hypothesis, which assumes market prices reflect all available information (Bikhchandani and Sharma 2000, p. 282).



Reframing Financial Markets as Complex Systems

10  |  CFA Institute

The feedback loop generated by herding can only be indirectly captured by 
traditional analyses, such as general equilibrium models, where investors 
maximize individual utility. Stated differently, if we assess every investor in 
isolation (or as the aggregated sum of isolated investors), it is impossible to 
fully anticipate the impacts of their interactions. As observed in a report from 
Thinking Ahead Institute (2017, p. 2), “Investors are inclined to assess the likely 
impact of their actions in isolation and therefore potentially miss the additional 
impact from other investors acting in a similar manner.” However, techniques 
used to study complex systems are oriented around simulating multiple 
heterogeneous agents that interact and self-organize into groups, generating 
emergent, higher-level effects (often in the form of stylized facts).

Using agent-based models (ABMs) (discussed later in this report), the impact 
of herding behavior can be analyzed.9 ABMs have been used to simulate how 
herding in household borrowing can lead to market boom and bust cycles, 
recreating observed housing price volatilities before, during, and after a 
housing market crash (Glavatskiy, Prokopenko, Carro, Ormerod, and Harre 
2021; Geanakoplos, Axtell, Farmer, Howitt, Conlee, Goldstein, Hendrey, Palmer, 
and Yang 2012). Likewise, heavy-tailed stock price distributions consistent 
with market data were successfully recreated by simulating randomized 
communication channels between investors; these communication channels 
led to the formation of clusters of agents that followed each other’s investment 
behaviors, which resulted in power-law distributions of asset prices (Cont and 
Bouchaud 2000). In essence, systems modeling allows analysts to see how 
boundedly rational investor decision making, including herding behaviors, leads 
to the emergence of key features of the stock market, including the previously 
listed stylized facts (Shapira, Berman, and Ben-Jacob 2014). By capturing 
realistic statistical features of the market, these models may assist with 
anticipating and scenario-planning future impacts of herding in the market.

Network Effects in Asset Pricing

Network effects in asset pricing refer to situations in which the value or 
performance of an asset is influenced not just by fundamentals but also by 
the interconnectedness of markets. Modern markets have strong network 
characteristics due to correlations between assets, companies, sectors, 
and investors (see Pacelli 2025). For instance, consider how index funds 
and ETFs connect assets: When money flows into or out of a market-
capitalization-weighted index fund, all stocks in the index experience buy or 
sell pressure simultaneously according to their weight in the index. Linked 
by index membership, the underlying portfolio assets are thus transacted 
together algorithmically irrespective of fundamental value. The rise of index-
based products has therefore strengthened the links between previously 
uncorrelated assets, as evidenced by stocks with high passive ownership/
index membership—yet from different sectors and diverse underlying 

9 A classic example is using ABMs to explain and predict the coordinated flying patterns of a murmuration or large 
flock of starlings.
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business models—collectively displaying rising betas (Brightman and Harvey 
2025). When enough trades occur algorithmically, the market becomes 
less elastic, generating heavy-tailed return distribution swings, increased 
idiosyncratic volatility, and elevated sensitivity to marketwide shocks (Boothe 
and Subedi 2024; Höfler, Schlag, and Schmeling 2025).

Along with the rise in index investing, markets have seen an increased overlap 
in asset holdings between investors.10 A commonly referenced outcome of 
portfolio overlap is the potential to transmit financial distress. If two institutions 
share a common asset, the immediate liquidation of the asset by one institution 
will impact the asset price and portfolio of the other institution (Braverman and 
Minca 2018). As more investors are linked to a common asset, dependencies 
arise not just between assets within a single portfolio but also between different 
investors (e.g., banks, mutual funds, and pension funds) and their portfolios.

Another example of interconnectedness comes from a study by Chen, Wu, 
Li, Bao, and Koedijk (2024), which suggests that information diffusion on 
social media platforms is highly associated with the co-movement of excess 
stock returns. This finding indicates that mapping the topology of information 
diffusion across distributed investor networks may be relevant for portfolio 
construction and risk management.

In short, understanding the effects of highly networked interactions is crucial if 
financial markets are treated as complex systems. Such techniques as network 
analysis and agent-based modeling have been used to capture asset and 
investor interconnections, often in the context of risk analysis (see Konstantinov 
and Fabozzi 2025; Bookstaber, Paddrick, and Tivnan 2018). Examples of both 
techniques can be found later in this report.

Regime Shifts and Adaptation

Approaching financial markets as a system allows analysts to anticipate and 
observe regime shifts in financial markets. Inspired by “phase transitions” in 
physics, regime shifts appear as changes in the qualitative behavior of the 
whole system due to an often very small change in some parameter (Harré 
and Bossomaier 2009). “In other words, as new technologies, policies, or 
geopolitical factors emerge, long-established statistical relationships and 
market behaviours can shift (i.e., inducing abrupt structural changes in time-
series data, invalidating prior assumptions of stable trends)” (Hepburn, 
Ives, Loni, Mealy, Barbrook-Johnson, Farmer, Stern, and Stiglitz 2025, p. 3). 
Understanding regime changes is crucial for both anticipating market behavior 
and determining the resiliency of financial markets.

10 See Gualdi, Cimini, Primicerio, Di Clemente, and Challet (2016) for an analysis of US institutional holdings from 
1999 to 2013; Kim (2021) for evidence of overlap from the South Korean equity fund market; and Koide, Hogen, and 
Sudo (2022) for a review of portfolio overlaps between Japanese financial institutions and global investment funds.
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As part of the system, investors learn and adapt to changing conditions. 
For example, after the 2008 Global Financial Crisis (GFC), many investors 
became more risk averse, focusing on downside protection. This adaptive shift 
influenced market behavior in subsequent years (e.g., a sustained preference 
for lower-volatility stocks; see Torga, Roma, Roma, Ferreira 2023). But as 
memories of the crisis faded and new opportunities (such as tech startups) 
arose, risk tolerance grew again. Market regimes, therefore, emerge not just 
as the backdrop for investors to consider but also as the consequence of 
investor behavior and risk tolerance. It is this ongoing dynamic and feedback 
between market conditions and investor actions that leads to market regime 
shifts, whether from high fear to high risk appetite or from bear to bull markets. 
Understanding and anticipating these transitions can improve investment 
strategy implementation and inform timing.

Regulatory bodies also evolve, leading to the rise and fall of regulatory trends 
and frameworks. Lukomnik and Hawley (2021), for example, discussed the 
advent of a stewardship code in the United Kingdom or the SEC Form N-PX 
proxy disclosure requirements in the United States as regulatory regime shifts. 
Other regime changes include broad adoption of transition finance policies 
(see Mak and Vinelli 2024; Hall, Foxon, and Bolton 2017) or the surge of 
organizations, coalitions, and initiatives promoting net-zero investment goals.11 
Indeed, climate mitigation policy regime shifts indicate broader concern about 
potential tipping points and abrupt transitions into new environmental and 
economic regimes (Hepburn et al. 2025).

Taking a complex systems approach encourages us to go beyond considering 
investors or assets in isolation and directs attention to interaction patterns. 
These patterns include which strategies reinforce or counteract each other, how 
diverse micro-level behaviors emerge as macro-level outcomes, where critical 
thresholds may lie, and what new regimes will replace old ones.

How Can Complex Systems Be Used in Portfolio 
Management?

A complex systems approach is not itself an investment strategy; rather, it is a 
way of conceptualizing and investigating market phenomena. Even so, adopting 
a complex systems lens can change the way asset owners and managers 
approach investing by allowing them to incorporate key aspects of complex 
systems, such as interconnection and adaptability, which are particularly 
relevant to dynamic portfolio construction and multifactor approaches.

11 A list of organizations associated with net-zero investment frameworks is available at https://rpc.cfainstitute.org/
topics/net-zero-investing/who-is-developing-the-net-zero-investment-frameworks.

https://rpc.cfainstitute.org/topics/net-zero-investing/who-is-developing-the-net-zero-investment-frameworks
https://rpc.cfainstitute.org/topics/net-zero-investing/who-is-developing-the-net-zero-investment-frameworks
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Traditional single-factor and smart beta strategies12 have evolved into more 
complicated factor timing and multifactor portfolios, requiring techniques that 
capture ongoing changes in factor dependencies (Jacobs, Levy, and Lee 2025). 
For example, within a multifactor portfolio, factors may interact or be highly 
positively or negatively correlated or uncorrelated at different times, demanding 
attention to regime-switching signals and agile reallocation and rebalancing 
in response to changing market conditions, economic outlook, or investment 
goals (Backhaus, Isiksaul, and Bausch 2022; Shu and Mulvey 2025). Investment 
products have also evolved, signaled by the rise of multifactor index funds, 
which dynamically allocate capital among multiple traditional factors (e.g., 
momentum, value, minimum volatility; see Doyle and Hayman 2024; Amenc, 
Goltz, and Sivasubramanian 2016; Amenc, Ducoulombier, Esakia, Goltz, and 
Sivasubramanian 2017). Due to its emphasis on interconnected networks and 
nonlinear dynamics that produce systemwide effects, complex systems analysis 
may aid in measuring and forecasting risk–return and asset interactions within 
these dynamic, multifactor strategies.

We also see the relevance for new complexity-driven methodologies as some of 
the largest institutional investors move away from fixed-weight strategic asset 
allocation (SAA) and toward a total portfolio approach (TPA) (Thinking Ahead 
Institute 2019). TPA promotes an integrated view of the portfolio as a dynamic 
balance sheet where every investment decision is evaluated in terms of its 
marginal impact on total fund risk, liquidity, return, and flexibility (Elkamhi and 
Lee 2025). Managers consider dynamic factors/exposures (beyond traditional 
Fama–French factors) across interdependent and overlapping asset classes that 
enhance the fund’s overall portfolio risk and return profile (CAIA Association 
2024). Whereas SAA is built on modern portfolio theory and capital market 
equilibrium models that construct portfolios based on expected returns and 
volatilities for each asset class, TPA demands market monitoring tools that 
can provide regime-aware assessments and portfolio construction tools that 
can transverse asset class silos (Elkamhi and Lee 2025). Complex systems 
approaches may complement TPA with a science-based framework that accords 
with TPA’s need to model networks of moving parts spanning asset classes, 
public and private markets, and regime shifts, ultimately enabling dynamic and 
adaptive portfolio strategies.

12 Smart beta strategies refer to a range of index-based investment products that incorporate factor exposures and 
are generally long only, though the term is used inconsistently (Doyle and Hayman 2024).
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Complex Systemic Risk

In a financial context, systemic risk refers to “a risk of disruption to financial 
services that is caused by an impairment of all or parts of the financial system 
and has the potential to have serious negative consequences for the real 
economy” (Caruana 2010). Of particular concern are possible market crashes 
or systemwide crises affecting the real economy. However, there is neither 
an established rulebook for what kinds of shocks may be relevant nor ideal 
methods for calculating the effects produced by those shocks. Disruptions to 
a financial system, for example, may be caused by endogenous factors, such 
as a bank collapse or credit defaults, or by exogenous factors, such as political 
turmoil or extreme weather events.13

In addition, no standard measure or quantification of systemic risk exists, thus 
generating policy debates surrounding best practices for evaluating systemic 
risk (Dijkman 2010). Market-based measures of systemic risk include conditional 
value at risk (CoVaR) and marginal expected shortfall (MES); both are derived 
from traditional risk estimates, such as value at risk (VaR) or expected shortfall 
(ES).14 Though used in practice, these measures inadequately capture the full 
complexities of systemic risk.

Systemwide VaR, for example, is more than the sum of the CoVaRs of 
institutions. Although “CoVaR may provide a realistic approximation for smaller 
banks,” it “cannot capture the heteroscedasticity characteristic of financial 
assets, which may severely underestimate systemic risk” (Ellis, Sharma, and 
Brzeszczyński 2022). Likewise, CoVaR and MES alone are “unlikely to detect 
asymptotic tail dependence,” which is fundamental for any systemic risk 
measure (Basilio, Oliveira, and Mahmoudvand 2020). As Hoffmann (2017, p. 184) 
described,

Standard risk models cannot accurately model the risk posed 
by especially rare, systemic events, as the number of financial 
crises in the past two decades have shown. . . . Not only have 
such rare events occurred far more frequently than predicted, 
but they have brought with them strong interdependencies 
between institutions and rapidly increasing correlations between 

13 What counts as “endogenous” and “exogenous” are relative to where one wishes to draw the boundaries 
of a system. They are not absolute categories.
14 CoVaR captures the VaR of the financial system “conditional on institutions being under distress” (Adrian and 
Brunnermeier 2008, p. 1). Both CVaR and CoVaR are sometimes expanded as “conditional VaR” and are based on 
value-at-risk concepts, but the “conditional” differs in each case: In CVaR (conditional value at risk or expected 
shortfall), it means the expected loss given that losses exceed the VaR threshold for an individual position or 
portfolio; in CoVaR, it means the VaR of the system conditional on another institution’s distress. CVaR is a tail-risk 
measure used in portfolio risk management, while CoVaR is a systemic risk measure accounting for spillover risks, 
mainly used in financial stability studies and regulatory contexts.

MES refers to the expected equity loss of a financial institution conditional on the market or sector being in 
distress—specifically, when the aggregate return falls into its worst q% tail of the loss distribution (Acharya, 
Pedersen, Philippon, and Richardson 2017, p. 3). VaR is “a measure of the size of the tail of the distribution of 
profits on a portfolio or for an organization” (Chance and Edleson 2024, p. 31). ES offers the tail conditional 
expectation by integrating all losses with low probabilities across the distribution tail (Hoffmann 2017).
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markets, for example, that would, under ‘normal’ circumstances, 
be deemed unrelated. . . . Conventional risk models have, 
therefore, all in all failed exactly where they were needed most 
(namely, when to address extreme risks) since they have proved 
to be conceptually inappropriate.

Contagion is commonly discussed in the context of regulatory analyses 
of systemic risk. Contagion occurs when the instability of an institution 
(e.g., a firm, market, or sector) spreads to other parts of the financial system, 
producing negative effects throughout the system and instigating a systemwide 
crisis (Smaga 2014, p. 11). Systemic risk can, therefore, be materialized as a 
contagion event.

The simplest forms of contagion may be represented as a domino effect. 
For example, a default by a major bank could immediately cause losses at 
other banks that lent it money, potentially causing those banks to fail, in turn. 
Empirical evidence shows that even mild market crashes in one country can 
increase the probability of crashes elsewhere as dominos fall (Fauzi and Wahyudi 
2016; Markwat, Kole, and Van Dijk 2009).15

However, real financial contagion is often more complex. Propagation of 
negative effects throughout a system is often highly dynamic, nonlinear, 
and multidirectional, requiring more advanced techniques to model these 
interactions (Pacelli, Cananà, Chakraborti, Di Tommaso, and Foglia 2025). When 
a shock hits, relationships among market participants can change amid the 
crisis. For example, once Bank A starts struggling, Bank B might preemptively 
cut off credit to Bank C out of fear, even if Bank C was not yet directly affected. 
Meanwhile, Bank C might sell assets to raise cash, pushing prices down 
and hurting other firms holding those assets. These interactions can form 
a web of changing feedback loops that include indirect effects (Quirici and 
Moro-Visconti 2025).

Real financial networks also exhibit self-organization and adaptation, requiring 
ongoing assessments at the system level. Pacelli (2025) noted that if regulators 
only analyze each institution in isolation (a purely microprudential view), 
they critically miss the systemic picture: The system can self-organize into 
a fragile state even if each part seems stable. Neglecting the diverse web 
of interconnections can lead to “inappropriate, superficial and pro-cyclical 
regulatory prescriptions”—essentially, regulations that might inadvertently 
increase risk in the system by not accounting for complex interactions 
(Pacelli 2025, p. 14).

Macroprudential regulation, born out of the GFC, seeks to acknowledge features 
of network interconnection. Such policies aim to generate systemic resilience 
by assessing the structural integrity of the financial system as a whole and 

15 Markwat et al. (2009, p. 2000) acknowledged that “there are indeed higher-order dependencies in the dynamic 
patterns of crashes, especially concerning the more severe crashes” that do not strictly follow patterns of linear 
autocorrelation.
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preventing the emergence of systemic crises. Still, even aggregate indicators 
of financial vulnerability used by regulators, central banks, and international 
institutions may miss important aspects of the complex financial system. 
For example, such measures as the Financial Conditions Index, the Financial 
Stress Index, or the Composite Indicator of Systemic Stress (CISS) may be 
useful to gain a combined snapshot of financial vulnerabilities; however, they 
cannot model future regime shifts or directly capture adaptive behavior in 
market participants as a crisis unfolds. Indeed, news of increased systemic 
risk could catalyze further investor panic, prompting sell-offs that lead to new 
vulnerabilities—a self-fulfilling loop (Pacelli et al. 2025).

Being able to map these multilevel feedback effects within the system is 
critical. Taking an example from Gai (2013), forced asset sales during periods 
of market stress—whether due to fire sales or funding liquidity shortfalls—can 
lead to losses that weaken banks’ balance sheets. This, in turn, constrains their 
capacity to extend credit, leading to a credit crunch that dampens consumption, 
investment, and economic growth. As real activity deteriorates, borrower 
defaults rise and asset values decline further, feeding back into the financial 
system. Evaluations of systemic risk must therefore “address the non-linear 
consequences implied by the two-way relationship between the financial system 
and the real economy, together with the sizable externalities implied by the 
interconnectedness of financial firms for the system as a whole” (Gai 2013, p. 3).

In sum, systemic risk analysis must be sensitive to the highly interconnected 
dynamics of financial systems. It requires continual monitoring not only of 
individual financial entities but also of the network of dependencies that 
signal how shocks might cascade and amplify through patterns of feedback, 
emergence, and self-organization. Later, we introduce techniques used to 
model these dynamics to better understand and mitigate systemic risk in 
practice.

Systemic Risk vs. Systematic Risk

Because systemic risk is about systemwide effects, it differs from risks affecting 
a single entity, as well as systematic risk (market risk) in a portfolio context. 
Systematic risk typically refers to broad market risk that cannot be diversified 
away (e.g., the risk related to macroeconomic factors, such as interest rates or 
inflation). Typically, systemic risk is the focus of regulators, while systematic risk 
is the focus of investors pricing assets.

In the CAPM, for example, systematic risk is captured by beta, which 
measures an asset’s exposure to market movements.16 Investors expect 
to be compensated for bearing systematic risk—hence the concept of an 
equity risk premium (the excess return on the equity market over risk-free 
assets). Systemic risk, in contrast, is about the system’s structural integrity. 

16 More precisely, beta measures the sensitivity of a stock’s return to the equity risk premium.
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It concerns regulators because it can lead to system collapse, not just asset 
price fluctuations.

Despite their differences, the two can be related. A systemic event such 
as a banking panic can trigger the realization of systematic risk, leading to 
broad market sell-offs as investors withdraw en masse or banks hoard cash, 
potentially freezing markets. Conversely, elevated systematic risk (i.e., high 
exposure of assets to common marketwide factors) can amplify the impact of 
adverse shocks. When widespread declines in asset prices occur, the losses 
can propagate stress through financial institutions with real-economy feedback 
loops, intensifying a systemic crisis (e.g., credit contractions and reduced 
consumption leading to widespread capital crunches, financial instability, and 
economic distress), which can further impact market prices (Borio, Drehmann, 
and Xia 2018; von Peter 2009).

Asset owners are increasingly acknowledging the interplay between the 
systematic risk in their portfolios and the systemic—often existential—risks 
imposed by such threats as climate change, geopolitical instability, and 
socioeconomic inequality (see Impact Management Platform 2023). Although 
system-level investors may focus on different environmental, social, and 
governance (ESG) aspects, they share a commitment to the belief that investors 
not only respond to investment conditions but also directly contribute to 
shaping those conditions. In other words, investors do not just passively 
capture market beta; they actively influence how the market performs by 
managing systemic risks as systematic risks and building long-term resiliency 
into capital markets (Gordon 2021).17

Asset owners may exhibit influence through portfolio allocation strategies, 
stewardship activities, impact investing, and engagement on regulatory 
policies, all of which demand a systems-based lens to realize market impact and 
enhance long-term value creation. Such groups as The Investment Integration 
Project, the Predistribution Initiative, the Institute for Energy Economics and 
Financial Analysis, and the Shareholder Commons, as well as UN-supported 
Principles for Responsible Investment (PRI) signatories, among others, have 
launched initiatives aimed at facilitating system-level investing (PRI 2024; 
PRI forthcoming).

Complex systems analysis offers a framework under which regulators and 
investors can come together to understand how systemic risk and systematic 
risk mutually impact one another. As an interdisciplinary field, complex systems 
sciences have a history of fostering engagement between disciplines and 
point to opportunities for increased collaboration between asset owners, 

17 Lukomnik and Hawley (2021, p. 41) described those who adopt this view as “beta activists,” maintaining that 
“in theory, the sum of all the investors’ expectations about any systematic risk (e.g., climate change, lack of gender 
diversity, etc.) is built into the perceived riskiness of ‘the market.’ Therefore, if a beta activist can cause a reduction 
in the perceived riskiness of a systematic risk, the entire market re-rates. That is similar to what happens when the 
market re-rates a single security targeted by an alpha activist. However, because the systematic risk factor targeted 
by a beta activist impacts the entire marketplace, even a small systematic risk re-rating can have hundreds of 
billions of dollars of impact.”
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policymakers, and investment professionals by bringing together concerns, 
perspectives, data, and forecasting techniques.

Exhibit 3 shows how enhancing resiliency from a complex systems lens 
emphasizes the capacity of financial systems to absorb shocks, adapt to 
disruptions, and recover without collapsing. This perspective acknowledges 
the inherent unpredictability and interconnectedness of financial ecosystems 
and shifts the focus toward strengthening underlying structures and enabling 
flexible, adaptive responses to emergent risks and nonlinear dynamics. 
In essence, building resilient systems requires attention to the following 
aspects of the system:

●	 Adaptive agents: Systemic risk in a complex system is dynamic, with agents 
adapting and evolving, sometimes generating new exposures as they adjust 
their strategies in response to market conditions and regulations. This 
process can make the system more prone to unexpected risk concentrations 
and hidden vulnerabilities over time.

●	 Network effects: Rather than viewing institutions or entities in isolation, 
complex systems analysis emphasizes the web of interconnections, 
including direct and indirect ties, which can amplify or dampen shocks. 
The emphasis is on how risk propagates through these connections, 
as seen in network models.

Exhibit 3. Resilience through a Systems Lens
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●	 Nonlinear dynamics and feedback loops: Complex systems exhibit nonlinear 
behaviors and feedback loops, where small shocks can sometimes lead to 
disproportionate, cascading failures or, alternatively, be absorbed without 
significant disruption. Relevant to this approach is the identification of 
“tipping points,” where the system’s state reaches a critical point prompting 
a regime change.

●	 Emergent outcomes: Agents (e.g., banks, funds, regulators) interact and 
adapt to each other’s actions, often leading to emergent patterns that can 
be unpredictable (e.g., periods of heightened volatility or regime shifts). 
These emergent patterns generate systemic risks that cannot be fully 
estimated by the sum of individual risks.
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HOW TO MODEL COMPLEX FINANCIAL 
SYSTEMS
The theoretical shifts embracing systems thinking in finance demand new 
ways of modeling complex phenomena. In practice, market analysis methods 
have often relied on the mathematics of calculus with stochastic differential 
equations and regression models (Konstantinov and Fabozzi 2025). Though 
these techniques alone may be sufficient for capturing simple multivariate 
problems, many macroeconomic and market-level behaviors of interest to 
analysts and regulators rely on key structural elements observed in complex 
systems. In other words, to study complex financial systems, we need modeling 
approaches that can stretch beyond assumptions of linearity and normal 
distribution for how losses propagate through the system (Farmer 2024). 
Traditional models—such as the CAPM, the Black–Scholes option pricing model, 
or dynamic stochastic general equilibrium (DSGE) models—provide important 
insights but typically require simplifying assumptions (e.g., representative 
agents, linearization around equilibrium, or normal distributions) that make 
it hard to simulate crises, contagion, or adaptive behavior.

Combined with a new era of big data and computing power, we are starting 
to see innovative techniques in the investment industry that do more than 
explain features of complexity; they explicitly map and simulate the dynamics of 
complex financial systems. Two of these approaches, agent-based modeling and 
network theory, provide distinct yet complementary insights. ABMs simulate 
interactions among heterogeneous, adaptive agents to reveal emergent 
phenomena, such as herding behavior, which can lead to volatility clustering. 
Network theory maps structural interconnections, highlighting contagion 
channels, systemic vulnerabilities, and key leverage points.

Although often used in practice for distinct purposes, these methods capture 
complementary perspectives. Within a system, agent interactions will 
endogenously form network patterns (e.g., hubs of influence or feedback loops) 
that constrain their subsequent behaviors, permitting further evolution of the 
interaction dynamics that lead to changes in the network structure. What this 
means for the practitioner is that simulating complex systems requires attention 
to both the dynamics of individual agent interactions and the structural 
(i.e., network) features that emerge from those interactions.

ABMs and network theory are just two of several commonly used modeling 
techniques in systems sciences (see Appendix B). While no single technique 
can model every aspect of a system of interest, each can highlight important 
features of the system that can be used to inform portfolio construction or 
systemic risk modeling. In practice, techniques can be combined or used in 
complementary ways to better understand and simulate the complex dynamics 
of a system. Ultimately, however, these modeling techniques all reflect a 
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burgeoning theoretical shift away from models of static equilibrium and efficient 
markets and toward embracing financial markets as complex adaptive systems.

Agent-Based Models to Capture Complex Dynamics

Agent-based models (ABMs) are computational models that simulate the 
interactions of autonomous “agents” to assess their effects on the system. 
ABMs model individual agents (which could be investors, banks, traders, etc.) 
with certain behaviors or decision rules. The ABM’s topology represents the 
interactions between agents that can unfold according to their defined rules. 
During the simulation, the agents interact step by step (often randomized and 
repeated thousands of times). The goal is to see what emergent phenomena 
result from the bottom-up interactions. As such, ABMs can capture multiple 
features of complex systems, including heterogeneous adaptive agents, 
emergence, and self-organization.

Thus, ABMs break away from traditional methods, such as DSGE models, many 
of which assume a unitary representative agent (Bookstaber 2017). Instead, 
a core feature of ABMs is the ability to model interactions between many 
heterogeneous agents with different risk preferences, investment strategies, 
or information. Agents interact within an environment, which can exogenously 
or endogenously introduce shocks, and analysts observe how the system 
evolves over time. Crucially, ABMs do not require the system to settle in 
equilibrium: They can generate booms, busts, cycles, or chaotic fluctuations 
as outcomes. As such, ABMs have been used across disciplines to model highly 
dynamic and volatile behavior, such as disease outbreaks and crowd behavior 
in crisis situations.

Because of their bottom-up design, ABMs would be less suited to forecasting 
the price of a particular asset, but they can be helpful in determining what 
trading activities might move the prices of assets or generate business cycles, 
price bubbles, clustered volatility, or the onset of “bear” or “bull” markets (Turrell 
2016). A classic use of ABMs is to study material risk generated by contagion 
effects and herd behavior (see Bookstaber and Sharma 2022). For instance, an 
ABM might simulate a market where agents decide to buy or sell based on their 
connections (e.g., social network influence) or in reaction to recent news events. 
By manipulating how strong the herding tendency is, we can see at what point 
and under what conditions a small shock might lead to a major crash.

In building an ABM, one must identify the types of agents, their decision rules, 
and how they interact. These rules may be informed by data or theory. ABMs are 
often used without perfectly fitting to data; they are exploratory. That said, 
calibration to real market data can be performed or model parameters can be 
selected to reproduce known patterns in market data. Common software used 
to construct ABMs includes NetLogo, AnyLogic, Altreva Adaptive Modeler, 
MASON, Repast, and GAMA Platform.
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Example: Agent-Based Stock Market Model 
with Fundamental and Technical Traders

A simplified model by Šperka and Spišák (2013) assesses the influence of 
transaction costs on the stability of financial markets. The computerized 
simulation features two types of traders (agents): fundamental traders and 
technical traders. Fundamental traders purchase assets when prices are below 
their fundamental value. Technical traders buy based on recent price trends. 
However, traders also communicate at random, and the more successful traders 
(based on current and past profitability) can convince the other traders to adopt 
their strategy.18 Agents can also change strategies independently, though at 
much lower probabilities. As such, the number of traders with a fundamental 
or technical strategy will change over time.

The base model runs using the computer simulation program NetLogo (see 
Exhibit 4). It features 10,000 agents trading over 5,000 days. Model parameters 
are located in the left panel of Exhibit 4 and are modifiable. The first three are 
price dynamics parameters that represent how strongly prices react to excess 
demand (a), how sensitive technical traders are to recent price signals (b), and 
how strongly fundamental traders respond to the gap between the market price 
and the fundamental value (c). Parameter d is a memory (discount) parameter, 
epsilon is the likelihood a trader will switch strategies independently, and 
lambda represents how strongly relative profitability differences influence 
switching when traders meet. Sigma-alpha, sigma-beta, and sigma-gamma 
represent stochastic parameters (introducing randomness or noise), and the 
last three parameters are baseline interaction and market microstructure 
calibrations.19 The middle panel charts shown in Exhibit 4 represent evolving 
price values, returns (log price changes), weights of technical trading strategy, 
and probabilities for switching strategy. On the right side, fundamental (black) 
and technical (yellow) traders are represented by color.

18 Successful “convincing” occurs at probability K, defined in Šperka and Spišák (2013).
19 See Westerhoff (2009) for a complete overview of the parameters adopted in Spišák and Šperka (2014).
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Exhibit 4. NetLogo Artificial Stock Market Simulation 
with Fundamental and Technical Traders

Source: Spišák and Šperka (2014).

Once the base model environment is established, transaction costs are 
introduced at a constant value of 0.015, which has a direct impact on asset 
prices. In the short run, this increases the number of technical traders and 
decreases fundamental trading, as prices increase relative to unchanging 
fundamental value, reducing the expected returns of fundamental traders. 
However, as the model continues to run, technical trading becomes less 
attractive, prices drop, and fundamental traders dominate, eventually leading to 
lower price volatility and market stabilization. Šperka and Spišák (2013) run the 
simulation once more at a higher transaction cost (0.03). Under this scenario, 
a return to stability was not observed, and technical traders continued to 
dominate, indicating that if transaction costs are high enough, technical trading 
becomes more attractive than fundamental strategies and the market continues 
to be unstable.
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Example: Simulating Banking Network Risk 
with ABMs

The International Monetary Fund developed an agent-based model called 
ABBA to analyze systemic risks in the banking system (Chan-Lau 2017). ABBA 
simulates interactions between three types of agents: savers, loans, and banks. 
Savers are distributed across global regions, each of which is dominated by 
one bank. Following payments of principal and interest, savers may withdraw 
their deposits from the bank and relocate to another region to open an account 
with another bank. Savers accounts remain solvent as long as the bank does 
not default. Loans are also distributed across regions, with each loan featuring 
several risk characteristics (i.e., probability of default, risk weight, rating, 
recovery rate in case of default, and fire sale loss rates). Based on the credit 
risk characteristics of the loan, banks will produce a loan rate quote and lend 
the amount as long as the bank can meet its capital and reserve requirements. 
Meanwhile, each bank agent is making multiple business decisions based on its 
financial health and regulatory environment. Banks consistently evaluate their 
loan portfolio solvency, assess net income, optimize loan portfolio composition 
to meet capital requirements, and decide whether to pay dividends (Chan-Lau 
2017). In ABBA, therefore, banks are the primary agents that exhibit adaptive 
behavior and can learn and modify as they go. The decision-making process of 
banks can therefore influence the flow of interactions within the system.

As banks interact in the form of interbank lending, an endogenous network 
forms (i.e., links are established between banks, loans, and savers). As the 
simulation runs and banks modify their decisions following loan defaults and 
indirect effects on capitalization, new network structures emerge. Analysts then 
simulate shocks, such as a change in capital requirements or a liquidity shock 
from savers withdrawing en masse, to see how the shock propagates.

Ultimately, ABBA is useful insofar as it can capture immense heterogeneity 
(banks of different sizes/strategies) and adaptive behavior (banks reacting to 
stress by deleveraging), illustrating how regulatory policy changes or shocks 
can lead to nonlinear outcomes in system stability. Indeed, tightening capital 
requirements might paradoxically increase short-term systemic risk if many 
banks deleverage simultaneously but may also improve long-term resilience 
(Chan-Lau 2017). Such insights are difficult to obtain from equilibrium models 
but emerge naturally in an ABM. Central banks and regulators are increasingly 
exploring ABMs like ABBA to complement traditional stress tests.

In some cases, ABMs use reinforcement learning to model agent behavior, 
adding additional layers of adaptability and insight. In these models, agents 
operate within a system of learning algorithms and reward structures that 
guide activity. Agents learn and adapt their behavior as the system evolves 
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under changing demands and conditions. Such models are useful in realistically 
modeling the dynamics of pricing strategies and market competition (Alonso 
2024). In addition, new “AI agents” with capabilities to follow complex, multistep 
decision-making patterns could be integrated as simulated agents within 
ABMs that would model more adaptive and potentially realistic interactions 
(Borsos et al. 2025). For a comprehensive review of current applications of 
ABMs in finance and economics, see Chudziak (2025). For a summary of ABMs, 
see Exhibit 5.

Exhibit 5. Agent-Based Models Summary

Key Features

Example Use Cases

• ABMs are well suited to capture emergent market phenomena. A well-known example
 showed that even if all agents trade with simple rules, their interactions can produce
 heavy-tailed return distributions and volatility clustering, mirroring real markets
 (LeBaron, Arthur, and Palmer 1999).

• Agents in ABMs are heterogeneous and can take up individual strategies or heuristics as
 well as adapt their strategies as environments evolve (Bookstaber and Sharma 2022).

• ABMs can incorporate behavior rules drawn from behavioral finance or observed trading
 patterns to model realistic bottom-up interactions. For instance, analysts could program
 agents to underweight recent losers or to panic sell after a certain loss threshold.

• No requirement of equilibrium or closed-form solution: The model “solution” is the
 simulated outcome.

• Simulate how herd behavior or feedback trading can lead to market bubbles and crashes.

• Model traders with varying individual risk tolerance levels and trading strategies to see
 how fluctuations in investor risk affect market trends and performance.

• Conduct dynamic stress tests (e.g., represent banks as agents who might withdraw lending
 when their capital falls to see systemic liquidity impacts and amplification events).

• Run “what-if” scenario simulations (e.g., the introduction of a new tax) that can inform
 policy creation and implementation.

Challenges

• Requires significant computational power. Large-scale simulations with many agents
 (especially if each agent is complex) can be computationally heavy and slow. However,
 increasing computing power can mitigate this issue over time.

• Sensitive to assumptions. Results can depend heavily on how agents are specified. If we
 miss an important behavior or constraint, the model might mis-predict outcomes (for
 example, omitting that agents have leverage limits could ignore a key feedback in a crisis).

• Can be difficult to calibrate and validate. Ensuring the agent rules are realistic and that
 the model’s output aligns with real data patterns is nontrivial. There is a risk of
 “overfitting” to known outcomes or, conversely, using overly simplistic rules that fail to
 capture realistic behaviors.
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Network Theory and Graph Models to Capture 
System Structure

While ABMs are useful for capturing systemwide patterns that emerge 
from dynamic interactions of heterogeneous agents, depicting the overall 
structure of the system can be challenging. System structure is significant 
to complex systems since the heterogeneity of agents implies that not all 
system components possess equal importance and understanding of where 
control points (hubs of influence or key leverage points) lie within the system 
can surface hidden vulnerabilities or areas for intervention. Additionally, 
simulating every dynamic interaction via an ABM is impractical, so mapping 
key relationships within the system is an effective first step for determining 
what parts of a system are most relevant for generating systemwide effects 
of interest (e.g., market return, volatility, or crashes) and how information 
or influence is distributed throughout the system.

Mapping the structure of a system is possible through network theory. Network 
theory is an area of mathematics used to analyze relationships and interactions 
of interconnected entities (Konstantinov and Fabozzi 2025). In practice, network 
theory provides a set of techniques for analyzing graphs. Graph models consist 
of nodes (vertices) and links (edges) connecting nodes. They range from simple 
models containing a small number of nodes to widely distributed and highly 
interconnected networks with weighted connectivities.

In finance, many structures can be represented as networks: interbank lending 
networks, counterparty exposure networks, cross-shareholding networks, 
payment flows, asset correlations, and so on. Each node might be a firm, bank, 
asset, or country, and each link represents some connection, such as a financial 
contract, correlation coefficient, or transaction. As such, network analysis 
provides a systematic method for analyzing relationships and flows between 
interconnected entities.

In practical terms, network analysis in finance often starts with constructing 
a matrix of connections, referred to as an adjacency matrix. For instance, an 
interbank network can be derived from exposure data: Matrix entry (i, j), for 
example, would represent the amount bank i is owed by bank j. From this 
adjacency matrix, the user can create a weighted graph and compute, for example, 
systemic risk metrics or simulate defaults (see Konstantinov and Fabozzi 2025).

From there, network models allow us to use such metrics as connectivity, 
centrality, clustering, and path lengths to understand the architecture of 
a financial system. For example, centrality measures can identify which 
institutions are “too central to fail” (because they serve as important hubs in 
the network; see Hüser 2015; Minoiu, Kang, Subrahmanian, and Berea 2014).20 

20 See Rodrigues (2018) and Wan, Mahajan, Kang, Moore, and Cho (2021) for an overview of network centrality 
measures. See also Lerman, Ghosh, and Kang (2010); Piraveenan, Prokopenko, and Hossain (2013); and Ghanem, 
Magnien, and Tarissan (2019) for centrality metrics applied to dynamic or evolving networks.
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Clustering can reveal communities of banks or stocks that are tightly knit and 
could have contagion within the cluster. Network paths might illuminate how 
a shock could propagate from one node to another through intermediate 
connections. As such, network models address the interaction structure across 
many nodes. Even if initial edge weights are derived from linear measures (as 
they often are in adjacency matrices), the heterogeneous geometry of the graph 
(e.g., hubs, communities, bottlenecks) creates system-level behavior (or risks) 
that may be nonlinear.

The application of machine learning techniques, such as deep learning, 
on graph data has allowed for improved analyses of highly interconnected and 
multidimensional networks, such as those of complex financial markets. Among 
these techniques, graph neural networks (GNNs) have emerged as particularly 
well suited for various graph-based tasks, including node classification, graph 
classification, and edge prediction (Wang, Zhang, Xiao, and Song 2021).

In risk management, network contagion models complement traditional stress 
tests. A stress test might assume one bank’s failure and then exogenously 
impose losses on others. A network model, in contrast, would identify how 
the failure causes losses through a web of endogenous exposures, possibly 
uncovering nonintuitive contagion paths (such as Bank A’s failure hurting Bank 
C via Bank B’s distress discussed earlier). The Office of Financial Research in the 
United States, for instance, has worked on network models for the credit default 
swap market to see how the default of one large counterparty would affect 
others in the web of credit default swap contracts (Chen and Wang 2013).

Example: Stock Market Analysis Using Networks

Namaki, Shirazi, Raei, and Jafari (2011) used network analysis to examine both 
a mature market, the Dow Jones Industrial Average (DJIA), and an emerging 
market, the Tehran Stock Exchange (TSE), to see whether stock correlation 
patterns have unique structural features. The researchers constructed a 
stock correlation network where nodes represent stocks and edges represent 
correlations. Both networks exhibited a “market mode,” captured by the largest 
eigenvalue of the correlation matrix, reflecting the collective movement of 
most stocks. The largest eigenvalue tends to surge during crises, signaling 
stronger marketwide co-movement.21

21 See Jolliffe and Cadima (2016) for an overview of principal component analysis, which is a linear dimensionality 
reduction technique.
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However, Namaki et al. (2011) wanted to uncover genuine stock relationships, 
so they used random matrix theory (RMT) to filter out the “market mode” from 
the correlation matrices.22 For the DJIA, this process significantly altered the 
mean correlation coefficient distribution, indicating that optimizing using raw 
correlations can overemphasize systematic risk while obscuring idiosyncratic 
features of the stocks. Results from the TSE analysis demonstrated scale-free 
properties within the stock network, meaning that a few highly connected 
“hub” stocks influence many others. These hubs are critical in understanding 
the market’s systemic risk profile and the impact of market shocks. By adjusting 
correlation thresholds (what correlation value is enough to constitute an edge), 
the authors demonstrated how the market connectivity structure can change, 
which could influence asset allocation and portfolio diversification strategies. 
Similar applications of network analysis could assist financial professionals 
in identifying key points of market influence and systemic vulnerabilities.

Network models can also be applied at a micro level to better understand 
portfolios or funds. For example, portfolio managers may use network 
algorithms to enhance diversification, as demonstrated by the case study that 
follows this section. Through identifying clusters of highly interconnected 
assets, portfolio managers can restructure portfolios to avoid concentrating 
assets within one cluster. This method can reveal hidden factor exposures that 
a simple asset-based or sector-based classification might overlook; for example, 
companies in different sectors may be tightly linked through supply chains 
or co-ownership within major indexes and ETFs.

In summary, network theory offers powerful analytical tools to map and 
evaluate the architecture of financial systems, shedding light on channels 
of risk transmission that are often obscured in traditional aggregate models 
(see Exhibit 6). This approach is becoming increasingly vital as financial 
networks become more densely connected and systemically complex.

22 RMT, originally developed to explain the energy levels of complex nuclei, is now used to filter noise in financial 
time series (Daly, Crane, and Ruskin 2008). The technique involves comparing eigenvalues of an empirically derived 
covariance or correlation matrix with those of a corresponding purely random matrix, thus allowing for the removal 
or replacement of “noisy” eigenvalues.
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Exhibit 6. Network Theory Models Summary

Key Features

Example Use Cases

Challenges

• Represents key structural features of highly interconnected networks that exhibit amplification
 or diminishing effects. For example, a “star” network—one central hub connected to many
 periphery nodes—is vulnerable if the hub fails. A highly clustered network might trap a shock
 in one cluster but keep it from spreading globally (or vice versa, if clusters are linked by a
 few bridges).

• Identify which bank failures would cause the greatest cascade, using network centrality metrics
 or simulating default contagion (Jo 2012; Giansante 2010).

• Gauge how a disruption at a key node (such as a major bank that conducts clearing or a critical
 supplier firm) could ripple through counterparties.

• Map how portfolios overlap via common asset holdings to see if many investors unwittingly
 form an interconnected sell-off network (relevant for crowded trades and liquidity risk).

• Examine cross-border capital flows through a network of countries to see how financial shocks
 could transmit internationally.

• Connections are dynamic. Financial networks are not static. Connections form and dissolve over
 time. Analyzing an evolving network (time-varying graph) is more complex than a static snapshot,
 and many network metrics are harder to interpret as the network changes.

• Some parameters must be inferred. The “edges” in financial networks are often not directly
 observable. For example, bilateral exposures between banks might be confidential. Analysts must
 infer networks from partial data or proxies (e.g., using correlations as edges).

• Can be hard to interpret. Even if we can compute centrality metrics, such as closeness centrality*
 or eigenvector centrality,** for firms in a network, translating that into an actionable risk
 assessment or investment strategy can be tricky. There is also a danger of oversimplifying 
 (e.g., just because a bank is central does not guarantee its failure will be catastrophic; it depends
 on the context and buffering mechanisms). Still, these metrics provide valuable signals.

*Closeness centrality is defined in terms of the average distance of each node to all others
 (Rodrigues 2018).

**Eigenvector centrality is a measure of a node’s centrality (i.e., importance) given the centrality of
 its neighbors (Konstantinov and Fabozzi 2025).

• Can be used to identify changes in network structure (e.g., banks might alter trading partners,
 leading to emergent hub structures). Ongoing monitoring of network clusters can help predict
 where risks are forming.

• Different types of connections can be represented in separate layers (e.g., an overlap of a credit
 network and a derivative network), which can interact. This is advanced but increasingly relevant
 for assessing how a liquidity freeze (one network) can trigger fire sales (another network of
 correlated assets), for example.
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CASE STUDY: NETWORK ASSET 
ALLOCATION

23 With additional constraints, including that the weighted returns of the portfolio equal a given value, portfolio 
weights are nonnegative and the sum of all portfolio weights is equal to 1.

This case study illustrates how network theory can be applied to asset allocation 
purposes. We emphasize that this example is merely illustrative, where the 
effectiveness of such methods depends on a multitude of factors, including the 
asset class and the quantity of data available. Moreover, we offer this case study 
as a demonstration of how to begin adopting systems thinking within traditional 
portfolio management contexts. It does not reject established approaches, such 
as mean–variance optimization; rather, it extends the norms of current practice 
to incorporate network theory. While fully embracing markets as complex 
systems likely means going beyond traditional financial approaches, both 
conceptually and methodologically, we acknowledge the need for a starting 
point—a place where practitioners can easily adopt new approaches that appeal 
to a systems perspective. With this in mind, we developed the following case 
study, which considers portfolio construction in the sovereign fixed-income 
asset class. The code for this case study can be found by visiting the RPC Labs 
GitHub repository at https://github.com/CFA-Institute-RPC.

Portfolio construction is central to the investment process, involving asset 
allocation and security selection to achieve targeted returns. In the case 
of fixed-income assets, the presence of highly correlated bond yields (the 
expected yearly return on the bond until maturity) introduces diversification 
risks. Specifically, if bond yields move closely together, the portfolio can face 
heightened sensitivity to interest rate shifts or macroeconomic changes, 
potentially magnifying risk exposure. Rising yields across correlated bonds lead 
to declining bond prices, negatively impacting the portfolio’s value. Conversely, 
falling yields lead to an increase in portfolio value. Hence, the correlation of 
bond yields can significantly influence portfolio risk.

While the amplification of gains or losses from high correlation in bond 
yields can be individually assessed for a few assets, it becomes challenging 
for hundreds or thousands of assets. One systematic approach to portfolio 
construction that minimizes the risk associated with highly correlated bond 
yields is a minimum-variance optimization. For selected assets, portfolio 
weights are assigned such that the portfolio variance (representing the risk 
objective) is minimized.23

However, issues may arise regarding the data used to derive portfolio weights. 
Specifically, the optimization may assign weights based on abnormal bond 
yields that are idiosyncratic to the specific sample period. This may result in 
overfitting, where the allocation results in the minimum-variance portfolio 
on in-sample data but is suboptimal on out-of-sample data. Overfitting can 
decrease the robustness of backtesting when evaluating portfolio performance 

https://github.com/CFA-Institute-RPC
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based on historical data, where results are sensitive to noise. To address these 
issues, we use network analysis, specifically a spanning tree methodology. With 
a spanning tree, we identify key correlations between the historical movements 
in bond yields, where the subset of correlations represents a network. Then, 
from the network, we can use properties from the network topology to inform 
constraints for bond holdings under the minimum-variance optimization.24 
Using such approaches, the portfolio variance can be reduced by controlling 
for portfolio weights assigned to highly correlated assets (as correlations with 
volatility represent the covariance of bond yields), thereby reducing overfitting 
from other correlations. Again, we emphasize that this case study only 
illustrates the network methodology; implementing the results as constraints 
in a portfolio optimization approach can be conducted in future work.

Data

We used European 10-year sovereign bond data obtained from LSEG with daily 
closing yield-to-maturity values during the year 2024. In total, we chose bonds 
from the following countries: Austria (AUT), Belgium (BEL), Germany (DEU), Spain 
(ESP), Finland (FIN), Ireland (IRL), Italy (ITA), the Netherlands (NLD), and Portugal 
(PRT). Sovereign bonds associated with these developed EU countries have high 
liquidity, thus facilitating the collection of reliable data to support our analysis.

Exhibit 7 presents summary statistics for the mean, volatility (standard 
deviation), skewness (the degree of asymmetry in the distribution of yield-to-
maturity values), kurtosis (the level of tailedness in the distribution, relative to 
a normal distribution), and maximum and minimum yield-to-maturity values 

24 This process is denoted either as a minimum or maximum spanning tree approach, depending on the metric 
used to compute edge weights.

Exhibit 7. Summary Statistics of Daily Yield to Maturity (%)

Country Mean Volatility Skewness Kurtosis Max. Min.

AUT 2.843 0.152 −0.095 −0.457 3.191 2.485

BEL 2.932 0.131 0.065 −0.493 3.269 2.652

DEU 2.341 0.144 0.078 −0.67 2.683 2.017

ESP 3.152 0.164 −0.341 −0.524 3.493 2.756

FIN 2.81 0.153 −0.002 −0.549 3.179 2.463

IRL 2.735 0.166 −0.115 −0.733 3.129 2.366

ITA 3.705 0.194 −0.427 −0.276 4.112 3.194

NLD 2.623 0.151 0.11 −0.481 2.994 2.278

PRT 2.952 0.188 −0.29 −0.719 3.324 2.51
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for each sovereign bond in 2024. The table shows that the average yield-to-
maturity values over the year remain similar across all fixed-income instruments. 
The lowest average yield to maturity is for Germany, 2.341, which is reflective 
of German bonds being considered a “safe-haven” instrument and a benchmark 
bond for the eurozone. Conversely, the average yield to maturity is highest 
for Italy, 3.705, which also has the highest volatility value, 0.194. The volatility 
for bonds from Ireland and Spain is also relatively high.

Sovereign Bond Correlations

We provide a heatmap of the correlation between sovereign bonds, where 
correlations are calculated with daily yield-to-maturity values over the 
January to December 2024 period (Exhibit 8). Across all bonds, we find a high 
correlation between sovereign bonds, reflecting the financial dependencies 
between eurozone countries. The high correlation is reflected in the correlation 
values of Austria and Finland and of Austria and the Netherlands, where 
correlation values between sovereign bonds are equal to 0.99, suggesting 
almost perfect positive correlation. There are entries in the correlation matrix 
where correlation values between sovereign bonds are high but not almost 
perfectly positively correlated, as observed between Germany and Italy, where 
the correlation value between the daily yield-to-maturity values of sovereign 
bonds is equal to 0.74. Note that while we identify high correlations among 
different bonds, not all correlations will be included in the network analysis; 
we include only a subset of correlations as part of the spanning tree.25

25 If numerical algorithms for correlation network construction are used, then the potential error should be 
considered if correlation values are high between securities where a unique network is not formed.

Exhibit 8. Correlation Heatmap of Daily Bond Yields
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Spanning Tree

Using a spanning tree approach, a minimum number of correlations 
between assets with the highest magnitude is chosen, where each asset 
has an associated correlation with another asset in the portfolio. The subset 
of correlations can be described under a network, where nodes represent 
assets and correlations represent edges connecting those nodes. We provide 
further details on how the network topology of the correlation spanning tree 
can be used to inform constraints on portfolio weights in the minimum-variance 
optimization approach to improve portfolio robustness.

In the minimum-variance optimization approach, the portfolio variance is 
calculated by the correlations in the yield to maturity, the volatility of these 
yields, and the portfolio weights assigned to each bond. The portfolio variance 
increases as correlation values and portfolio weights of assets associated with 
these correlations increase. While applying the optimization approach, portfolio 
weights are calculated by accounting for all correlation values between assets, 
even if these correlations arise from noise in the data. To address this issue, 
we focus on the subset of correlations identified under a spanning tree, where 
we can decrease overfitting under the optimization approach by controlling 
for portfolio weights based on the most “significant” correlations—specifically, 
correlations between assets we believe could lead to an increase in portfolio 
risk over time.

However, because all assets are represented in the spanning tree, we cannot 
account for all correlations in the spanning tree by decreasing the portfolio 
weights of all assets, because this would violate other constraints in the 
portfolio optimization approach. We therefore need to prioritize the decrease 
in portfolio risk for some of the correlations in the spanning tree. Hence, we 
choose a subset of assets that are the most interconnected in the spanning 
tree—specifically, nodes with the most edges. With edges representing 
correlations between assets, the greater the number of edges associated with 
this subset of assets, the greater the ability to lower the portfolio risk from 
these correlations in the minimum-variance optimization.

To identify these assets with a high number of correlations in the spanning 
tree, we rely on centrality metrics. Centrality measures how connected a node 
is to other nodes. For the spanning tree, the more central an asset is, the more 
correlations it has with other assets and thus the larger its influence on portfolio 
variance. Hence, reducing the weight of such assets decreases the contribution 
of spanning tree–selected correlations to portfolio risk.

While centrality can be defined in multiple ways, we use eigenvector centrality 
(defined in the glossary). The eigenvector centrality represents how central a 
node is to other nodes, accounting for the centrality of those nodes, where at 
equilibrium, the eigenvector centrality of a node accounts for the centrality of 
all other nodes in the network. The eigenvector centrality differs from other 
measures (such as degree centrality) that account for only first-order connectivity.
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To illustrate this approach, consider a portfolio of four bonds. In the minimum-
variance optimization, where no spanning tree constraints are applied, assume 
for this portfolio that the optimal weights are evenly distributed across all 
four bonds (0.25, 0.25, 0.25, 0.25), with the first entry representing Bond 1, 
the second entry representing Bond 2, and so forth. Now, suppose from the 
spanning tree, constructed from correlations with high positive magnitude, we 
find that Bonds 1 and 2 are the most central. To limit the portfolio variance from 
correlations with Bonds 1 and 2, we impose an upper bound constraint of 0.2 
on their combined weight. This means that, subject to all other constraints, no 
more than 20% of the portfolio can be allocated in total to Bonds 1 and 2. The 
maximum allocation of portfolio weight to Bonds 1 and 2 reduces the increase in 
portfolio risk from correlations associated with Bonds 1 and 2. The choice of 0.2 
(i.e., 20%) is illustrative; in practice, the bound would depend on the magnitude 
of correlations and the network topology of the spanning tree.

Establishing an upper bound of 0.2 on Bonds 1 and 2 leads to a corresponding 
lower bound constraint of 0.8 on the combined weights of Bonds 3 and 4, 
ensuring that at least 80% of the portfolio is allocated to them. Because the 
total portfolio weight must equal 1 under the minimum-variance optimization 
approach, any upper bound on one set of bonds necessitates a lower bound 
on the complementary set. This lower bound ensures a minimum allocation 
to Bonds 3 and 4.

With these spanning tree–informed constraints, one feasible allocation could 
be (0.1, 0.1, 0.4, 0.4). Other allocations, such as (0.2, 0.0, 0.8, 0.0), also satisfy 
the constraints. Crucially, across all feasible solutions, the constraints reallocate 
portfolio weights away from the most central, highly correlated bonds—here, 
Bonds 1 and 2, whose total weight decreases relative to the unconstrained 
(0.25, 0.25, 0.25, 0.25)—and toward less central, less correlated bonds (here, 
Bonds 3 and 4, whose weights increase). If applied in practice, the number 
of bonds subject to upper bound constraints should be calibrated through 
backtesting to ensure portfolio robustness.

Exhibit 9 shows which assets to apply either an upper or lower bound constraint 
on. We designate assets (light blue nodes) with an upper bound constraint as 
being underweighted, as the associated portfolio weights for this set of assets 
are lower with the spanning tree–informed constraint. For all other assets 
(dark blue nodes), we designate assets with a lower bound constraint as being 
overweighted, with higher portfolio weights under the portfolio optimization. 
We use our centrality metric to determine these constraints. Specifically, we 
include assets in the upper bound constraint if the total normalized eigenvector 
centrality sum of assets exceeds 0.5, representing (light blue) nodes where at 
least 50% of the network centrality is contained.26 All other nodes are therefore 
subject to the lower bound constraint.

26 This assumption can be adjusted to include nodes where 40% or 80% (for example) of the centrality 
is represented.
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In Exhibit 9, we can identify small clusters of connected assets, where these 
connections can be related to financial and economic similarities. For example, 
we find Austria, Finland, and the Netherlands are interconnected in the 
spanning tree; these countries have relatively low fiscal debts. We also find 
that Spain and Italy are connected; both of these countries have relatively 
high debt-to-GDP ratios.

Based on eigenvector centrality, as Finland, the Netherlands, and Portugal 
are the most central in the network, and as part of a portfolio optimization 
approach, an upper bound on the total portfolio weight would be applied 
to these assets; a lower bound constraint would be applied on all remaining 
assets. Applying an upper bound constraint to portfolio weights for Finland, 
the Netherlands, and Portugal in the portfolio optimization problem would 
have the largest impact on decreasing the total portfolio risk because the 
assets accounting for 50% of the centrality are associated with 75% of the total 
number of correlations in the spanning tree. However, the difference in the 
correlation magnitude of these edges compared with periphery node edges is 
small because correlations were chosen from a set of correlation values that are 
high, on average. In this regard, the difference in the change in portfolio weights 
based on correlations under the spanning tree would be small. Using network 
approaches, we can establish additional constraints for the minimum-variance 
portfolio optimization, addressing potential overfitting issues that may arise.

Exhibit 9. Correlation Spanning Tree of 10-Year Sovereign Bonds
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Other Considerations

Here, we highlight several points relating to network analysis for portfolio 
allocation that did not appear in our results. The first is short selling, where 
network methods can inform negative correlations. Short selling can increase the 
value of the portfolio. In the case of two assets that are negatively correlated, by 
observing the historical data on yield to maturity, the asset for which there is a 
decrease in yield to maturity over time can be longed (positive asset allocation 
weighting) and the asset for which there is an increase in yield to maturity over 
time can be shorted (negative asset allocation weighting). However, increasing 
the range of weights can increase portfolio variance and risk, where losses can 
be unbounded. Hence, extensions to short selling would require more detailed 
analysis and backtesting to build effective long-term strategies.

In our case study, we use a one-year horizon of daily yield-to-maturity values for 
sovereign bonds. However, correlations can vary significantly depending on the 
length and frequency of the observation window (e.g., daily, weekly, or monthly). 
Shorter windows may capture more timely dynamics but risk producing unstable 
correlations, particularly during periods of market stress. In contrast, longer 
windows provide stability but may smooth over temporal changes that are 
important for portfolio risk management. Thus, the appropriate time window 
should reflect both the type of assets in the portfolio and the investment 
horizon, which ultimately are at the discretion of the portfolio manager.

Another consideration is the choice of method used to construct the network. 
A spanning tree method was used in this example, where the minimal amount 
of information was such that all nodes representing assets were connected 
through correlations. However, the minimal information may not encompass 
all the relevant information, where one could argue that key information on 
correlations between assets was missing from the network. Hence, how 
informed network constraints perform under portfolio optimization and out-of-
sample data will vary depending on the assets and the methodology used to 
construct the correlation network, which should be tested.

We motivate the use of networks for asset allocation under a minimum-variance 
optimization problem, where networks serve as a constraint on portfolio 
weights. However, the use of minimum-variance optimization has limitations, 
including the objective for asset allocation, which accounts for only the portfolio 
risk and how such risk is defined (i.e., only the portfolio variance). In this 
regard, other approaches that do not depend only on historical information 
or objectives that account for other criteria for portfolio allocation (e.g., ESG 
considerations) could also be included in the network approach.

Finally, we assume in this analysis that the portfolio is self-financing, with a 
margin equal to 100% of the portfolio value with no portfolio leverage. However, 
borrowing on margin can significantly increase portfolio leverage, in addition to 
taking short positions. Such financing conditions will require further constraints 
on the risk side in asset allocation, accounting for correlations across all assets 
that can increase portfolio risk.
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CONCLUSION

27 For a more detailed account, see Bookstaber (2007) and Farmer (2024).

This report reviewed a foundational shift in how capital markets can be 
understood and analyzed using the lens of complex systems. Traditional 
financial paradigms—rooted in neoclassical economics, equilibrium-based 
models, and assumptions of fully rational agents—often prove inadequate in 
capturing the dynamic, nonlinear, and interconnected nature of contemporary 
financial systems. In contrast, complexity science offers a robust and 
interdisciplinary framework capable of addressing these limitations by 
foregrounding emergent phenomena, adaptive behavior, feedback dynamics, 
and systemic interdependencies.

Integrating such tools as agent-based modeling and network analysis into 
portfolio management and risk management provides both theoretical depth 
and practical utility. These methodologies enable practitioners to simulate 
heterogeneous agent behavior, model contagion pathways, identify structural 
vulnerabilities, and assess resilience in the face of exogenous and endogenous 
shocks. Such approaches are increasingly relevant for understanding and 
managing systemic risk, forecasting regime shifts, and designing investment 
strategies responsive to evolving market environments.

The complex systems perspective presented in this report aligns with existing 
and emerging investment frameworks, including multifactor strategies, TPA, 
and systems-level investing—the latter emphasizing the interconnectedness 
between financial returns and the broader socioeconomic and environmental 
systems within which markets operate. However, adopting a complex systems 
approach is not just a methodological enhancement but also constitutes a 
paradigmatic shift with significant implications for portfolio construction, risk 
management, regulatory oversight, and long-term capital stewardship. The 
full range of implications extends well beyond the scope of this report.27 Yet, 
we hope it is clear that acknowledging capital markets as complex systems 
demands shifts in how we think about investments, investors, and risk. As 
such, if we fully adopt a systems perspective, new models will be needed that 
challenge inherited assumptions and embrace the complexities of our current 
and future world.

The introduction of complex systems into investment management represents 
a timely evolution. By transitioning to a new analytical framework, investment 
professionals and policymakers can be further equipped to navigate uncertainty, 
anticipate structural transformations, and contribute to collectively developing 
more resilient and adaptive financial systems.
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APPENDIX A. A BRIEF HISTORY OF 
COMPLEX SYSTEMS IN FINANCE

28 GST refers to a general science of fundamental principles governing the origin, function, and maintenance of 
natural and social systems (Issitt 2024). GST emphasizes the study of systems as a whole and identifying how 
the underlying behaviors of interconnected elements generate isomorphisms and emergent properties across 
different levels of the system (Hofkirchner and Schafranek 2011).
29 Such application of Brownian motion can be traced further back to the seminal work of Louis Bachelier (1900).
30 Catastrophe theory is a mathematical framework used to describe discontinuous transitions between the states 
of a system, given smooth variation of the underlying parameters (Roopnarine 2008).

While complex systems analysis is not new, its evolution has taken many paths, 
intersecting with economics and finance at multiple points. Understanding this 
history can illuminate how we arrived at current practices and where we might 
be headed.

Early Insights from Mathematics and Physics 
(1950s–1960s)

What would become complex systems theory was in its infancy with such 
researchers as applied mathematician Norbert Wiener (1948), who focused on 
early cybernetics, and biologist Ludwig von Bertalanffy (1968), who introduced 
general systems theory (GST).28 Along with other contributors, systems 
approaches spread across such disciplines as engineering, physics, biology, 
and psychology (see van der Leeuw 2019).

At the same time, approaches used to study particle motion and geometric 
features of nature were applied to financial markets, with Maurice F. Osborne 
(1959) applying Brownian motion29 to stock prices and Benoît Mandelbrot 
(1963) applying fractal geometry to price movement self-similarity across time 
scales. While Osborne’s work reinforced the random walk hypothesis and the 
development of the Black–Scholes option pricing model, which dominated 
financial theory for decades, Mandelbrot’s analysis suggested that markets are 
nonrandom and non-Gaussian and retain memory effects, an early indicator 
that finance could be understood through complexity science.

Complexity Science Meets Financial Markets 
(1970s–1980s)

Complex systems theory continued to develop in such fields as physics and 
ecology, where researchers studied how interactions among components within 
a system could lead to emergent, unpredictable behaviors. These developments 
were slowly introduced to economics and finance. Key early work came from 
such researchers as mathematician E. C. Zeeman (1974), who introduced 
catastrophe theory to model sudden market transitions, arguing that investor 
sentiment shifts could drive abrupt crashes.30
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In 1984, the Santa Fe Institute (SFI) opened as a hub for complexity research. 
Economists, physicists, and biologists, such as Murray Gell-Mann, John Holland, 
and W. Brian Arthur, collaborated at SFI to model financial markets as complex 
adaptive systems. Scheinkman and LeBaron (1989) applied nonlinear dynamical 
methods to financial time-series data, identifying nonrandom, nonlinear 
dependencies in stock returns.

By the end of the 1980s, the overlap of complexity and finance had gained 
momentum on two fronts. First, SFI and other institutions fostered conferences 
and books, such as The Economy as an Evolving Complex System (Anderson, 
Arrow, and Pines 1988), where economists and physicists exchanged ideas. 
Second, a growing body of empirical work hinted that markets might exhibit 
complex system dynamics, including nonlinear feedback patterns. The stage 
was set for rising interest in the 1990s as computing power and interdisciplinary 
collaboration grew.

Finance Begins Embracing Complex Systems 
Frameworks (1990s–2000s)

The 1990s witnessed a convergence of complexity and finance in multiple 
areas. Economists began to build computational models of markets as evolving 
ecologies of agents, an example of which is SFI’s “artificial stock market” 
(Ehrentreich 2008). Using agent-based modeling, researchers simulated a 
market in which heterogeneous, adaptive agents traded with each other. They 
found that as the model ran, agents produced unpredictable outcomes not 
captured by traditional equilibrium models but reminiscent of the emergent 
behavior of financial markets, such as periodic bubbles and crashes, herd-driven 
volatility clusters, and regimes of high and low volatility. These features arose 
endogenously and illustrated that markets naturally self-organize into complex, 
nonequilibrium states.

At the same time, physicists brought a data-driven, “law-finding” approach, 
treating markets like physical systems to be empirically studied. The growing 
influence of physics into economics took shape as “econophysics”—a term 
coined in the mid-1990s to describe the trend. Physicists such as Rosario 
Mantegna and H. Eugene Stanley (1999) applied methods from statistical 
mechanics to asset prices and other financial data. Although mainstream 
economists had previously adopted some computations from physics 
(e.g., Brownian motion, mentioned previously), a common belief among 
econophysicists was that standard economic theory was unable to explain the 
non-Gaussian (i.e., heavy-tailed) distributions of empirical market data (Rosser 
2021, pp. 69–70). Econophysicists confirmed and extended Mandelbrot’s earlier 
observations, identifying heavy tails and other scaling phenomena across 
individual stocks, stock indexes, and company size growth rates (Stanley, 
Amaral, Canning, Gopikrishnan, Lee, and Liu 1999). Researchers also discovered 
long-range correlations in volatility and clustering of market activity, suggesting 
self-organizing behavior. While these ideas did not immediately hit mainstream 
economics, they planted seeds for future quantitative finance techniques.
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In the 2000s, complex systems approaches to finance gained practical 
relevance. Researchers began applying concepts of self-organized criticality, 
examining whether markets operate near critical points (Johansen, Ledoit, 
and Sornette 2000). Around the middle of the decade, some economists and 
policymakers acknowledged the growing complexity of financial systems, 
driven by exotic derivatives, global banking networks, and algorithmic trading. 
A few stakeholders warned that this complexity posed systemic risks (see 
Bookstaber 2007; Buffett 2003; Haldane 2009; May, Levin, and Sugihara 
2008). The 2008 GFC solidified attention to complex systemic risk. The crisis 
unfolded as a network cascade in which feedback loops and interbank failures 
amplified shocks—dynamics traditional risk models failed to capture. Instead, 
such concepts as network contagion, heavy-tail risk, and adaptive behavior 
were introduced. By the end of the decade, financial markets were increasingly 
recognized as a deeply interconnected complex system, necessitating new 
analytical tools to understand and mitigate systemic risk.

Contemporary Developments and Advanced 
Applications (2010s to Present)

Following the GFC, additional economists and regulators adopted complexity 
science concepts, such as “tipping points,” “networks,” “feedback,” and 
“resilience,” though complexity science’s quantitative and modeling tools 
remained underutilized (Battiston et al. 2016). Stakeholders such as Andrew 
Haldane, chief economist at the Bank of England (from 2014 to 2021), and John 
Rutledge, chief investment strategist at Safanad (a global principal investment 
firm), called for real-time “financial weather maps” (weather patterns are classic 
examples of complex systems) to dynamically track systemic risks (Nordrum 
2016; Rutledge 2020). In recent years, complex systems theory in finance has 
been further bolstered by advances in computing and data. The rise of big data 
and machine learning enabled the calibration of more sophisticated models that 
capture nonlinear relationships and emergent patterns.31

The COVID-19 pandemic in 2020 further highlighted the need for complex 
systems approaches. Researchers have been working on models that integrate 
epidemiological dynamics with economic networks to understand how such 
events as a virus outbreak can trigger a financial crisis via behavioral responses 
and policy reactions.

There is also growing interest in multilayer network models, where different 
network layers might represent financial, supply chain, and information links 
simultaneously (Pacelli 2025). These models can help capture how a shock in 
one domain (e.g., a disruption in trade networks) can compound with shocks 
in another (financial networks).

31 For example, reinforcement learning algorithms (a type of machine learning) are now used in adaptive trading 
strategies, effectively allowing trading agents to learn and evolve in response to market feedback. Such algorithms 
echo the idea of markets as complex adaptive systems: They do not assume a static optimal strategy but, rather, 
continually adapt to new data.
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APPENDIX B. COMMON MODELING 
TECHNIQUES FOR COMPLEX SYSTEMS
Systems scientists use multiple techniques to analyze complex systems. This 
report focuses on ABMs and network theory models. Other notable models 
include nonlinear dynamical systems modeling and system dynamics or causal 
loop diagrams. Importantly, no model will provide a complete picture of a 
complex system, and different techniques will be better at capturing certain 
system features over others. For example, ABMs capture heterogeneous 
agents and interaction dynamics, whereas network theory focuses on network 
structure. Likewise, other models are useful in cases of highly nonlinear 
phenomena (i.e., sensitive to initial conditions) or to qualitatively identify 
feedback loops within a system. The technique selected will depend on the 
functional purpose of the study and what aspect of market phenomena one 
wishes to capture. While these models are not exhaustive of the full range of 
tools used by systems scientists, they demonstrate additional methodologies 
used in investigating different features of complex systems.

A dynamical systems model is one that evolves over time according to rules 
expressed as mathematical equations (primarily differential equations; see 
Ackley, Lessler, and Glymour 2022). Model formalizations are represented as 
vectors across a phase space, S, capturing all possible states of the system 
across time, t, which may be continuous or discrete (Boccara 2010). The 
evolution law(s) determines the state of the system at a point in time based 
on previous states of the system.

For example, a formal dynamical systems model would consist of the following:

●	 A set of state variables describing the system at time t (e.g., price, volatility, 
interest rate)

●	 An evolution law that tells you how those state variables change from t to 
t + 1, generally written as a differential function

●	 Additional parameters and external inputs

A nonlinear dynamical system is one in which the evolution rules are nonlinear 
such that they produce disproportionately large or complex responses to small 
changes in initial conditions or parameters. Nonlinearity is a key ingredient for 
modeling such phenomena as chaos (sensitive dependence on initial conditions) 
and complex oscillatory behavior. Analysts might study trajectories through 
the phase space to identify attractors (states or cycles the system gravitates 
toward) or repellers. In finance, dynamical systems theory can be used to model 
business cycles, asset price dynamics, or other time series where feedback 
loops exist.
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Likewise, based on the concepts of cybernetics, Jay Forrester of MIT developed 
system dynamics techniques to model the interactions within systems 
(Hester and Adams 2014, p. 53). Unlike dynamical systems modeling, which is 
centered on formalized mathematical models, system dynamics is an approach 
used to represent high levels of aggregation, focusing on interrelationships 
and feedback loops between stocks (entities that accumulate or deplete) and 
flows (rates of change) within a system. Causal loop diagrams are the main 
analytical tool used to capture system dynamics, usually represented through 
arrows between system components. Relationships depicted in causal loop 
diagrams may be defined by mathematical equations derived from systematized 
data, though they are often derived from qualitative sources. (See Exhibit B1 
for a comparison of four common modeling techniques used in complex 
systems analysis.)

Exhibit B1. Complex Systems Modeling Techniques

What Is It?

What Aspects 
of Complex Systems 

Are Emphasized? Challenges

Agent-based models Simulations of 
autonomous agent 
interactions that affect 
the system as a whole

Heterogeneous adaptive 
agents, emergence, 
self-organization

Computational 
requirements; sensitive to 
assumptions; difficulties 
calibrating and evaluating

Network theory and 
graph models

Representations of 
interconnected or 
dependent entities 
along with relative 
strength of connections

Interconnected networks Real connections in data 
are dynamic; parameters 
must be inferred from 
data; can be challenging to 
translate into actions

Nonlinear dynamical 
systems modeling

Vectors across a 
possibility space 
that mathematically 
represent states of the 
system as it evolves

Emergence, nonlinearity, 
and regime shifts

Model specifications may 
not be obvious from the 
data; does not provide 
neat analytical solutions; 
can be hard to interpret

System dynamics and 
causal loop diagrams

Diagrams of causal flow 
within a system

Feedback loops and 
interconnected networks

Uses aggregated metrics; 
parameters difficult 
to estimate; risk of 
oversimplification
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GLOSSARY
Adaptive agents: Market participants who respond to each other’s behavior 
and environmental conditions as they evolve.

Agent-based models (ABMs): Computational models that simulate the 
interactions of autonomous “agents” to assess their effects on the system.

Bounded rationality: Individuals aim for satisfactory solutions rather than 
optimal ones, given cognitive and information limitations (Simon 1955).

Closeness centrality: The measure of centrality of a node defined in terms 
of the average distance of the node to all others (Rodrigues 2018).

Conditional value at risk (CoVaR): Captures the VaR of the financial system 
“conditional on institutions being under distress” (Adrian and Brunnermeier 
2008, p. 1).

Contagion: When the instability of an institution (e.g., an instrument, market, 
sector, or infrastructure) spreads to other parts of the financial system, 
producing negative effects throughout the system and instigating a systemwide 
crisis (Smaga 2014, p. 11).

Econobiology: Also called “evolutionary economics”; an application of complex 
systems to financial markets that uses lessons on complexity from evolutionary 
biology to understand economic and market behavior (Rickles 2011).

Econophysics: An application of complex systems to financial markets inspired 
by complexity frameworks and statistical modeling in physics and applied 
to economic and market behavior (Rickles 2011).

Eigenvector centrality: A measure of a node’s centrality given the centrality 
of its neighbors (Konstantinov and Fabozzi 2025).

Emergence: Higher-order features or patterns arise from lower-level 
interactions.

Expected shortfall (ES): The tail conditional expectation by integrating all losses 
with low probabilities across the distribution tail (Hoffmann 2017).

Graph models: Network representations that consist of nodes (vertices) 
and links (edges) connecting nodes; used in network analysis.

Marginal expected shortfall (MES): A financial institution’s “losses in the tail 
of the aggregate sector’s loss distribution” (Acharya et al. 2017, p. 3).
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Networks: Webs of relationships through which entities or agents are linked; 
a network view looks at how connections between entities/agents transmit 
and in some cases amplify shocks.

Network theory: An area of mathematics used to analyze relationships and 
interactions of interconnected entities (Konstantinov and Fabozzi 2025).

Nonlinearity: A property of a system in which the output is not proportional 
to the input; small changes can have outsized effects.

Resilience: The capacity to absorb shocks and reorganize; how a system’s 
interconnected relationships and structural vulnerabilities might 
mitigate shocks.

Self-organization: Structure or order can emerge from the bottom up; 
lower-level activity creates patterns at higher levels.

Stylized facts: A set of properties common across many instruments, markets, 
and time periods and observed by independent empirical studies, which any 
theory of markets should explain (Cont 2001).

Systematic risk: Broad market risk that cannot be diversified away.

Systemic risk: “A risk of disruption to financial services that is caused by an 
impairment of all or parts of the financial system and has the potential to have 
serious negative consequences for the real economy” (Caruana 2010).

Value at risk (VaR): “A measure of the size of the tail of the distribution of profits 
on a portfolio or for an organization” (Chance and Edleson 2024, p. 31).
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